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Basically like the last one
• ~20 multiple choice. Chapters 7-10
• Ch. 7.1-10 interactions (energy)

• 1, 5-7 interaction basics
• 2, 8-9 potential energy
• 3-4, 8, 10 dissipative forces

• Ch. 8.1-10 force
• 1-5, 7 characteristics of force
• 6, 8, 9 important forces
• 1, 4-5, 7 effects of forces
• 10 impulse

© 2015 Pearson Education, Inc.

Exam 2 details
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Basically like the last one
• Ch. 9.1-8 Work

• 1-2, 5-6 work by constant force
• 3-4 energy diagrams
• 7 variable & distributed forces
• 8 power

• Ch. 10.3-5, 7 Motion in a plane
• 7 projectile motion
• 2-3 forces in 2D
• 4 friction
• 5 work
• (need to know 1-2, 6 info on vectors, but not tested directly)

© 2015 Pearson Education, Inc.

Exam 2 details
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Concepts

© 2015 Pearson Education, Inc.

Chapter 10: Motion in a plane
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Section Goal

© 2015 Pearson Education, Inc.

Section 10.1: Straight is a relative term

You will learn to
• Recognize that the trajectory followed by a free-

falling object depends on the state of motion of the 
observer.
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Section 10.1: Straight is a relative term

• To begin our discussion of 
motion in a plane, consider 
the film clip in the figure. 

• The ball is dropped from a 
pole attached to a cart that 
is moving to the right at a 
constant speed.
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Video …

• https://www.youtube.com/watch?v=JCampZIwL5w
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Section 10.1: Straight is a relative term

• The figure shows that
• (a) The ball falls to the ground in a 

straight line if observed from the 
cart’s reference frame. 

• (b) The ball has a horizontal 
displacement in addition to the 
straight downward motion when 
observed from Earth’s reference 
frame. 

• The figure shows us that the motion of 
the ball in Earth’s reference frame can 
be broken down into two parts: 
• Free fall in the vertical direction
• Constant velocity motion in the 

horizontal direction
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(a) In Figure 10.2, what is the ball’s velocity the instant 
before it is released? (b) Is the ball’s speed in the reference frame 
of the cart greater than, equal to, or smaller than its speed in the 
Earth reference frame?

© 2015 Pearson Education, Inc.

Checkpoint 10.1

10.1
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In what reference frame? It depends …
Before release, v = 0 relative to cart (attached)

but in Earth’s frame, velocity is vcart

After release: ball now has a vertical component of velocity that 
the cart doesn’t. Relative to the earth, its speed is higher

Speed = vector magnitude of velocity

© 2015 Pearson Education, Inc.

Checkpoint 10.1

10.1
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A passenger in a speeding train drops a peanut. 

Which is greater?

1. The magnitude of the acceleration of the peanut as 
measured by the passenger.

2. The magnitude of the acceleration of the peanut as 
measured by a person standing next to the track.

3. Neither, the accelerations are the same to both
observers.

© 2015 Pearson Education, Inc.

Section 10.1
Question 1
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A passenger in a speeding train drops a peanut. 

Which is greater?

1. The magnitude of the acceleration of the peanut as 
measured by the passenger.

2. The magnitude of the acceleration of the peanut as 
measured by a person standing next to the track.

3. Neither, the accelerations are the same to both
observers – same interaction

© 2015 Pearson Education, Inc.

Section 10.1
Question 1
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Section Goals

© 2015 Pearson Education, Inc.

Section 10.2: Vectors in a plane

You will learn to
• Determine the sum and the difference of two vectors 

using a graphical method.
• Develop a procedure to compute the x and y

components of a vector using a set of mutually 
perpendicular axes.

• Understand that the acceleration component parallel 
to the instantaneous velocity increases the speed of 
the object, and the perpendicular acceleration 
component changes the direction of the velocity.
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Section 10.2: Vectors in a plane

• To analyze the motion of an object 
moving in a plane, we need to 
define two reference axes, as 
shown on the right.

• We see from the figure at right that 
the ball’s displacement in Earth’s 
reference frame is the vector sum 
of the horizontal displacement   
and the vertical displacement 

  Δ
x

   Δ
y.
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• The vector sum of two vectors in a plane is obtained by placing the 
tail of the second vector at the head of the first vector, as illustrated 
below. 

• To subtract a vector from a vector     reverse the direction    of 
and then add the reversed    to 

© 2015 Pearson Education, Inc.

Section 10.2: Vectors in a plane

  

b    

a,
   
a.  


b

  

b
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Is vector addition commutative? Is vector subtraction
commutative?

1. Yes, yes
2. Yes, no
3. No, yes
4. No, no

© 2015 Pearson Education, Inc.

Section 10.2
Question 2
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Is vector addition commutative? Is vector subtraction
commutative?

1. Yes, yes
2. Yes, no – order matters for subtraction
3. No, yes
4. No, no

© 2015 Pearson Education, Inc.

Section 10.2
Question 2
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• Any vector    can be decomposed to component 
vectors  and     along the axes of some conveniently 
chosen set of mutually perpendicular axes, called a 
rectangular coordinate system. 

• The procedure for decomposing a vector is shown 
below.

© 2015 Pearson Education, Inc.

Section 10.2: Vectors in a plane

  

A

  

Ax   


Ay
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• The figure below shows the decomposition of a 
vector in three coordinate systems. 

• You need to choose the coordinate system that best 
suits the problem at hand.

© 2015 Pearson Education, Inc.

Section 10.2: Vectors in a plane

  

A
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• The displacement, instantaneous velocity, and acceleration of 
the ball in the previous section is shown below. 

• Notice that the instantaneous velocity and acceleration are not 
in the same direction. What does this mean?

© 2015 Pearson Education, Inc.

Section 10.2: Vectors in a plane
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• To answer the question on the previous slide, we will decompose the 
acceleration vector into two components: one parallel to the 
instantaneous velocity, and one perpendicular to it.

• In two-dimensional motion, the component of the acceleration 
parallel to the instantaneous velocity changes the speed; the 
component of acceleration perpendicular to the instantaneous 
velocity changes the direction of the velocity but not its 
magnitude.

© 2015 Pearson Education, Inc.

Section 10.2: Vectors in a plane
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In Figure 10.10, the ball’s instantaneous velocity     does 
not point in the same direction as the displacement       (it points 
above the final position of the ball). Why?

© 2015 Pearson Education, Inc.

Checkpoint 10.2

10.2  

υ

  Δ
r
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The ball’s instantaneous velocity is the displacement over an 
infinitesimal time interval. It is tangential to the trajectory at any 
point.

The displacement vector is the entire net motion of the ball, 
pointing from initial to final positions.

(tangent vs secant)

© 2015 Pearson Education, Inc.

Checkpoint 10.2

10.2
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Section Goals

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

You will learn to
• Apply the vector decomposition technique to analyze 

the motion of a brick along an inclined surface.
• Realize that choosing a coordinate system such that 

one of the axes lies along the direction of acceleration 
of the object allows you to break the problem neatly 
into two parts.



Slide 10-25

• The figure shows a brick lying on a horizontal plank and then 
the plank is gently tilted. 

• When the angle of incline exceeds a θmax the brick accelerates 
down the incline. 

• Then, the vector sum of the forces exerted on the brick must 
also point down the incline

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces
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• Because the brick is constrained to move along the surface of the 
plank, it make sense to choose the x axis along surface

• The force components parallel to the surface are called tangential 
components. 

• The force components perpendicular to the surface are called 
normal components. Normal components must cancel here!

• Contact force contains friction as tangential part

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces
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• Can resolve all forces into two components:
• Component along the ramp
• Component perpendicular to ramp

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces
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A suitcase being loaded into an airplane moves at constant 
velocity on an inclined conveyor belt. Draw a free-body diagram 
for the suitcase as it moves up along with the belt. Show the 
normal and tangential components of the forces exerted on the 
suitcase.

Both vert & horz components
must sum to zero!

© 2015 Pearson Education, Inc.

Checkpoint 10.3

10.3
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• The brick problem suggests which axes we should 
choose in a given problem:
• If possible, choose a coordinate system such 

that one of the axes lies along the direction of 
the acceleration of the object under 
consideration.

• Will it make a difference in the final answer?
• No, but it can make things easier

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces
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Example 10.2 Pulling a friend on a swing

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

Using a rope, you pull a friend sitting on a swing (Figure 
10.16). (a) As you increase the angle θ, does the magnitude 
of the force      required to hold your friend in place increase 
or decrease?

   

Frp

c
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Example 10.2 Pulling a friend on a swing 
(cont.)

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

(b) Is the magnitude of that force larger than, equal to, or 
smaller than the magnitude of the gravitational force 
exerted by Earth on your friend? (Consider the situation for 
both small and large values of θ.)

   

FEp

G
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Example 10.2 Pulling a friend on a swing 
(cont.)

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

(c) Is the magnitude of the force      exerted by the swing on 
your friend larger than, equal to, or smaller than   


Fsp

c

  FEp
G ?
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Example 10.2 Pulling a friend on a swing 
(cont.)

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

(a) As you increase the angle θ, does the magnitude of the 
force      required to hold your friend in place increase or 
decrease?
(b) Is the magnitude of that force larger than, equal to, or 
smaller than the magnitude of the gravitational force 
exerted by Earth on your friend? 
(c) Is the magnitude of the force      exerted by the swing on 
your friend larger than, equal to, or smaller than

   

Fsp

c

  FEp
G ?

   

FEp

G

   

Frp

c
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Section 10.3: Decomposition of forces

Example 10.2 Pulling a friend on a swing 
(cont.)
❶ GETTING STARTED I begin by 
drawing a free-body diagram of your 
friend (Figure 10.17). Three forces 
are exerted on him:        the force of 
gravity directed vertically downward, 
the horizontal force      exerted by the 
rope, and a force      exerted by the 
swing seat.

   

FEp

G ,

   

Frp

c

   

Fsp

c
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Section 10.3: Decomposition of forces

Example 10.2 Pulling a friend on a swing 
(cont.)
❶ GETTING STARTED This latter 
force      is exerted by the suspension 
point via the chains of the swing and 
is thus directed along the chains. I 
therefore choose a horizontal x axis 
and a vertical y axis, so that two of the 
three forces lie along axes. Because 
your friend’s acceleration is zero, the 
vector sum of the forces must be zero.

   

Fsp

c
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Example 10.2 Pulling a friend on a swing 
(cont.)

❷ DEVISE PLAN Because your friend is at rest, the 
vectors along the two axes must add up to zero. The 
best way to see how the magnitude of the force
exerted by the rope must change as θ is increased is to 
draw free-body diagrams showing different values of θ. 
To answer parts b and c, I can compare the various 
forces in my free-body diagrams.

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

   

Frp

c
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Section 10.3: Decomposition of forces

Example 10.2 Pulling a friend on a swing 
(cont.)
❸ EXECUTE PLAN (a) I begin 
by decomposing into x and y
components (Figure 10.18a). 
Because the forces must add to 
zero along both axes, I conclude 
from my diagram that must 
be equal in magnitude to        the 
downward force of gravity. 
Likewise, must be equal in 
magnitude to       the horizontal 
force the rope exerts on your 
friend.

   

Fsp

c

   

Fsp y

c

   

FEp

G ,

   

Fsp x

c

   

Frp

c ,



Slide 10-38© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

Example 10.2 Pulling a friend on a swing 
(cont.)
❸ EXECUTE PLAN Next, I 
draw a second free-body 
diagram for a larger angle θ
(Figure 10.18b). As θ
increases,        must remain 
equal in magnitude to 
(otherwise your friend would 
accelerate vertically). As 
Figure 10.18b shows, 
increasing θ while keeping 
constant requires the 
magnitude of to increase.

   

Fsp y

c

   

FEp

G

   

Fsp y

c

   

Fsp x

c
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Section 10.3: Decomposition of forces

Example 10.2 Pulling a friend on a swing 
(cont.)
❸ EXECUTE PLAN 
Because your friend is at 
rest, the forces in the 
horizontal direction 
must add up to zero and 
so                    So if the 
magnitude of 
increases, the magnitude 
of must increase, 
too. ✔

  Frp
c = Fsp x

c .

   

Fsp x

c

   

Frp

c



Slide 10-40© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

Example 10.2 Pulling a friend on a swing 
(cont.)

from the figure: tan ✓ =
|Fc

sp,x|

|Fc
sp,y|

for ✓ < 45

�
, tan ✓ < 1, so |Fc

sp,x| < |Fc
sp,y|

because |Fc
sp,y| = FG

Ep

and |Fc
sp,x| = Fc

rp

that means for ✓ < 45

� Fc
rp

< FG
Ep

when ✓ > 45

�
, tan ✓ > 1 and thus

|Fc
sp,x| > |Fc

sp,y| and |Fc
rp

| > |FG
Ep

|

because |Fc
sp,y| = FG

Ep

and |Fc
sp,x| = Fc

rp

that means for ✓ < 45

� Fc
rp

< FG
Ep

when ✓ > 45

�
, tan ✓ > 1 and thus

|Fc
sp,x| > |Fc

sp,y| and |Fc
rp

| > |FG
Ep

|
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❸ EXECUTE PLAN (c)
Therefore,      must always be larger than       when θ ≠ 0.

   

Fsp y

c = FEp
G   and  Fsp

c = Fsp x
c( )2

+ Fsp y
c( )2

.

  Fsp
c

  FEp
G

Example 10.2 Pulling a friend on a swing 
(cont.)

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

✔

Since the y component of 
the force of the seat already 
equals the force of gravity, 
the total force of the seat 
must be always greater
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Example 10.2 Pulling a friend on a swing 
(cont.)

❹ EVALUATE RESULT I know from experience that 
you have to pull harder to move a swing farther from its 
equilibrium position, and so my answer to part a makes 
sense. With regard to part b, when the swing is at rest at 
45o, the forces      and       on your friend make the same 
angle with the force       and so       and       should be 
equal in magnitude.

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

   

Fsp

c ,    

Frp

c

   

FEp

G   

Frp

c

   

FEp

G
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Example 10.2 Pulling a friend on a swing 
(cont.)

❹ EVALUATE RESULT The force of gravity is 
independent of the angle, but the force exerted by the 
rope increases with increasing angle, and so it makes 
sense that for angles larger than 45o,      is larger than            

In part c, because the vertical component of the 
force      exerted by the seat on your friend always has to 
be equal to the force of gravity, adding a horizontal 
component makes      larger than        as I found.

© 2015 Pearson Education, Inc.

Section 10.3: Decomposition of forces

   

Fsp

c

   

Frp

c

   

FEp

G ,

   

FEp

G .

   

Fsp

c
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You decide to move a heavy file cabinet by sliding it 
across the floor. You push against the cabinet, but it doesn’t 
budge. Draw a free-body diagram for it.

© 2015 Pearson Education, Inc.

Checkpoint 10.4

10.4

You apply a horizontal force, but it still 
doesn’t move. That means the contact 
force must have a horizontal component 
as well as a vertical component!

Vertical = weight 
Horizontal = friction
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Section Goals

© 2015 Pearson Education, Inc.

Section 10.4: Friction

You will learn to
• Recognize that when the contact forces acting 

between two interacting surfaces are decomposed, the 
tangential component is the force of friction. 
The normal component is called the normal force.

• Classify the friction force present when the surfaces 
are not moving relative to each other as static 
friction, and when they move relative to each other 
as kinetic friction.
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(a) Suppose you push the file cabinet just enough to keep 
it moving at constant speed. Draw a free-body diagram for the 
cabinet while it slides at constant speed. (b) Suddenly you stop 
pushing. Draw a free-body diagram for the file cabinet at this 
instant.

© 2015 Pearson Education, Inc.

Checkpoint 10.5

10.5

• Consider pushing a heavy file cabinet across a floor.
• The tangential component of the contact force exerted 

by the floor on the cabinet has to do with friction.
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slides at constant 
speed while pushing

stopped pushing 
(but still in motion)
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• Consider the contact force exerted by the floor on the cabinet:
• The normal component is called the normal force and the 

tangential component is the force of friction.
• To understand the difference between normal and frictional 

forces, consider the brick on a horizontal wooden plank.
• As seen in the figure, the normal force takes on whatever 

value to balance the net downward force, up to the breaking 
point.

© 2015 Pearson Education, Inc.

Section 10.4: Friction
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• Now consider gently pushing the brick to the right, as shown.
• The horizontal frictional force is caused by microscopic bonds 

between the surfaces in contact.
• As you push the brick, the net effect of these microscopic forces 

is to hold the brick in place.
• As you increase your push force, this tangential component of the 

contact force grows.

© 2015 Pearson Education, Inc.

Section 10.4: Friction
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• The friction exerted by the surfaces that are not 
moving relative to each other is called static friction.

• When the horizontal push force exceeds the 
maximum force of static friction, the brick will 
accelerate.

• The friction force exerted by the surfaces when they 
move relative to each other is call kinetic friction, 
which is caused by transient microscopic bonds 
between the two surfaces.

© 2015 Pearson Education, Inc.

Section 10.4: Friction
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You push horizontally on a crate at rest on the floor, 
gently at first and then with increasing force until you 
cannot push harder. The crate does not move. What 
happens to the force of static friction between crate 
and floor during this process?

1. It is always zero.
2. It remains constant in magnitude.
3. It increases in magnitude.
4. It decreases in magnitude.
5. More information is needed to decide.

© 2015 Pearson Education, Inc.

Section 10.4
Question 3
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You push horizontally on a crate at rest on the floor, 
gently at first and then with increasing force until you 
cannot push harder. The crate does not move. What 
happens to the force of static friction between crate 
and floor during this process?

1. It is always zero.
2. It remains constant in magnitude.
3. It increases in magnitude.
4. It decreases in magnitude.
5. More information is needed to decide.

© 2015 Pearson Education, Inc.

Section 10.4
Question 3
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• The main differences between the normal force and 
the force of static friction are
• The maximum value of the force of static friction 

is generally much smaller than the maximum 
value of the normal force.

• Once the maximum value of the normal force is 
reached, the normal force disappears, but once the 
maximum value of the force of static friction is 
reached, there still is a smaller but nonzero force 
of kinetic friction.

© 2015 Pearson Education, Inc.

Section 10.4: Friction
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In a panic situation, many drivers make the mistake of 
locking their brakes and skidding to a stop rather than 
applying the brakes gently. A skidding car often takes 
longer to stop. Why?

1. This is a misconception; it doesn’t matter how the 
brakes are applied.

2. The coefficient of static friction is larger than the 
coefficient of kinetic friction.

3. The coefficient of kinetic friction is larger than the 
coefficient of static friction.

© 2015 Pearson Education, Inc.

Section 10.10
Question 9
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In a panic situation, many drivers make the mistake of 
locking their brakes and skidding to a stop rather than 
applying the brakes gently. A skidding car often takes 
longer to stop. Why?

1. This is a misconception; it doesn’t matter how the 
brakes are applied.

2. The coefficient of static friction is larger than the 
coefficient of kinetic friction. Skidding means you 
use kinetic friction, which provides less force!

3. The coefficient of kinetic friction is larger than the 
coefficient of static friction.

© 2015 Pearson Education, Inc.

Section 10.10
Question 9
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Section Goal

© 2015 Pearson Education, Inc.

Section 10.5: Work and Friction

You will learn to
• Recognize that kinetic force causes energy dissipation 

and static friction causes no energy dissipation.
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• Like normal force, the force of static friction is an 
elastic force that causes no irreversible change. 

• The force of elastic friction causes no energy 
dissipation (no force displacement)

• Kinetic friction does cause irreversible change, 
including causing microscopic damage to the 
surfaces. 

• The force of kinetic friction is not an elastic force and 
so causes energy dissipation.

© 2015 Pearson Education, Inc.

Section 10.5: Work and Friction
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• Consider the two cases shown in the figure. 
• Both of these cases are examples where the object is 

accelerated by static friction.

© 2015 Pearson Education, Inc.

Section 10.5: Work and Friction
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In the diagram below, the velocity of an object is given 
along with the vector representing a force exerted on the 
object. For each case, determine whether the object’s 
speed increases, decreases, or remains constant. Also 
determine whether the object’s direction changes in the 
clockwise direction, changes in the counterclockwise 
direction, or doesn’t change.

© 2015 Pearson Education, Inc.

Chapter 10: Self-Quiz #1
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In the diagram below, the velocity of an object is given 
along with the vector representing a force exerted on the 
object. For each case, determine whether the object’s 
speed increases, decreases, or remains constant. Also 
determine whether the object’s direction changes in the 
clockwise direction, changes in the counterclockwise 
direction, or doesn’t change.

© 2015 Pearson Education, Inc.

Chapter 10: Self-Quiz #1

increases
turns CW

decreases
turns CCW

constant
turns CW

decreases
no turning
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• Tension in the right cable is 790N
• What is the tension in the left cable?
• What is the inertia of the platform?

© 2015 Pearson Education, Inc.

10.30
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Free body diagram

T1

T2

mg

30o45o
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• Forces sum to zero as vectors
• Sum of components along each axis also zero!

© 2015 Pearson Education, Inc.

Static situation

T1

T2

mg

30o45o
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• Know T1 = 790N

© 2015 Pearson Education, Inc.

Static situation

T1

T2

mg

30o45o

m =
1

g
(T1 sin 30+ T2 sin 45) ⇡ 110 kg

T2 = T1
cos 30

cos 45

⇡ 970N
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Each diagram in the figure below indicates the 
momentum of an object before and after a force is 
exerted on it. For each case determine the direction of 
the force.

© 2015 Pearson Education, Inc.

Chapter 10: Self-Quiz #3
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Answer
In each case the force is parallel to 
(Figure 10.26).

© 2015 Pearson Education, Inc.

Chapter 10: Self-Quiz #3

   Δ
p = pf – pi
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Motion in a plane

© 2015 Pearson Education, Inc.
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Quantitative Tools

© 2015 Pearson Education, Inc.

Chapter 10: Motion in a plane

Slide 12-68
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Section Goals
You will learn to
• Represent vectors using polar coordinates and 

rectangular coordinates.
• Express rectangular coordinates in terms of polar 

coordinates and vice versa using trigonometry. 
• Determine the sum of vectors using their components.

© 2015 Pearson Education, Inc.

Section 10.6: Vector algebra
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Example 10.4 Speeding ball
A ball is thrown at an angle of 30o to the horizontal at a 
speed of 30 m/s. Write the ball’s velocity in terms of 
rectangular unit vectors.

© 2015 Pearson Education, Inc.

Section 10.6: Vector algebra
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Example 10.4 Speeding ball (cont.)
❶ GETTING STARTED I begin by making a sketch showing 
the velocity vector and its decomposition in a rectangular 
coordinate system (Figure 10.30). I position the x axis along the 
horizontal in the direction of motion and the y axis along the 
vertical. I label the x and y components of the ball’s velocity υx 
and υy, respectively.

© 2015 Pearson Education, Inc.

Section 10.6: Vector algebra

 

υ
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Example 10.4 Speeding ball (cont.)
❷ DEVISE PLAN Equation 10.5 tells me that the 
velocity vector can be written as                        To 
determine the x and y components, I apply trigonometry 
to the triangle made up by υ, υx, and υy.

© 2015 Pearson Education, Inc.

Section 10.6: Vector algebra

   

υ =υxî +υ y ĵ.
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Example 10.4 Speeding ball (cont.)
❸ EXECUTE PLAN From my sketch I see that 
cos θ = υx /υ and sin θ = υy /υ, where υ = 30 m/s and 
θ = 30o. Therefore υx = υ cos θ and υy = υ sin θ. 
Substituting the values given for υ and θ, I calculate the 
rectangular components:
υx = (30 m/s)(cos 30o) = (30 m/s)(0.87) = +26 m/s
υy= (30 m/s)(sin 30o) = (30 m/s)(0.50) = +15 m/s.

The velocity in terms of unit vectors is thus

© 2015 Pearson Education, Inc.

Section 10.6: Vector algebra

   

υ =υxî +υ y ĵ = (+26 m/s)î + (+15 m/s) ĵ.



Slide 10-74

Example 10.4 Speeding ball (cont.)
❹ EVALUATE RESULT The x and y components are 
both positive, as I expect because I chose the direction 
of the axis in the direction that the ball is moving, and 
the magnitude of υx is larger than that of υy, as it should 
be for a launch angle that is smaller than 45o. I can 
quickly check my math by using Eq. 10.6 to calculate 
the magnitude of the velocity:

which is the speed at which the ball is launched.
© 2015 Pearson Education, Inc.
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  υ = υx
2 +υ y

2 = (26 m/s)2 + (15 m/s)2 = 30 m/s,
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Section Goals
You will learn to
• Infer that knowing how to decompose vectors 

allows us to separate motion in a plane to two 
one-dimensional problems.

• Apply the equations for constant acceleration motion 
we developed in Chapter 3 to projectile motion.

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions
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• The position vector of an object moving in two dimensions is

• The object’s instantaneous velocity is 

• Similarly, instantaneous acceleration components are

• Decomposing vectors into components allows us to separate 
motion in a plane into two one-dimensional problems.

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions

   
r = xî + yĵ

   

υ = lim

Δt→0

Δx
Δt

î + lim
Δt→0

Δy
Δt

ĵ =υxι̂ +υ y ĵ

  
υx =

dx
dt

  and  υ y =
dy
dt

  
ax =

dυx

dt
= d 2x

dt2   and  ay =
dυ y

dt
= d 2 y

dt2
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• Consider the motion of a ball launched straight up from a cart 
moving at a constant velocity (see the figure on the previous 
slide). 

• The resulting two-dimensional projectile motion in Earth’s 
reference frame is the curved trajectory shown in the figure. 

• The balls has a constant downward acceleration of ay = –g.

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions
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• In Earth’s reference frame, the ball’s initial velocity is

• The ball’s launch angle relative to the x axis is

• Using ax = 0 and ay = –g in Equations 3.4 and 3.8, we get

υx,f = υx,i (constant velocity)

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions

  yf = yi +υ y ,iΔt − 1
2 g(Δt)2   (constant acceleration)

  
tanθ =

υ y ,i

υx ,i

   

υi =υx ,iî +υ y ,i ĵ

υy,f = υy,i – gΔt (constant acceleration)

xf = xi + υx,iΔt (constant velocity)
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Example 10.5 Position of highest point
The ball of Figure 10.32 is launched from the origin of 
an xy coordinate system. Write expressions giving, at 
the top of its trajectory, the ball’s rectangular 
coordinates in terms of its initial speed υi and the 
acceleration due to gravity g.

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
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Example 10.5 Position of highest point (cont.)
❶ GETTING STARTED Because the ball is launched 
from the origin, xi = 0 and yi = 0. As the ball moves 
upward, the vertical component of its velocity, υy, is 
positive. After crossing its highest position, the ball 
moves downward, and so now υy is negative. As the ball 
passes through its highest position, therefore, υy reverses 
sign, so at that position υy = 0.

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions
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Example 10.5 Position of highest point (cont.)
❷ DEVISE PLAN Taking the highest position as 
my final position and then substituting υy,f = 0 into 
Eq. 10.18, I can determine the time interval Δttop it takes 
the ball to travel to this position. Once I know Δttop, I 
can use Eqs. 10.19 and 10.20 to obtain the ball’s 
coordinates at the top.

© 2015 Pearson Education, Inc.
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dimensions
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Example 10.5 Position of highest point (cont.)
❸ EXECUTE PLAN Substituting υy,f = 0 into 
Eq. 10.18, I get

0 = υy,i – gΔttop.

Solving for Δttop then yields 

© 2015 Pearson Education, Inc.
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Δttop =

υ y ,i

g
. (1)
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Example 10.5 Position of highest point (cont.)
❸ EXECUTE PLAN Using xi = 0, yi = 0 in Eqs. 10.19 
and 10.20, I then calculate the location of the highest 
position:

and

© 2015 Pearson Education, Inc.
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xtop = 0+υx ,i

υ y ,i

g

⎛

⎝⎜
⎞

⎠⎟
=
υx ,iυ y ,i

g

ytop = 0+υ y ,i

υ y ,i

g

⎛

⎝⎜
⎞

⎠⎟
− 1

2 g
υ y ,i

g

⎛

⎝⎜
⎞

⎠⎟

2

=
υ y ,i

2

g
− 1

2

υ y ,i
2

g
= 1

2

υ y ,i
2

g
.✔

or x

top

=
v

2

i sin
2

✓

2g
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Example 10.5 Position of highest point (cont.)
❹ EVALUATE RESULT Because the ball moves at 
constant velocity in the horizontal direction, the 
x coordinate of the highest position is the horizontal 
velocity component υx,i multiplied by the time interval it 
takes to reach the top (given by Eq. 1). The y coordinate 
of the highest position does not depend on υx,i as 
I expect because the vertical and horizontal motions are 
independent of each other.

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions
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Example 10.6 Range of projectile
How far from the launch position is the position at 
which the ball of Figure 10.32 is once again back in the 
cart? (This distance is called the horizontal range of the 
projectile.)

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions



Slide 10-87

Example 10.6 Range of projectile (cont.)
❶ GETTING STARTED As we saw in Example 3.6, the 
time interval taken by a projectile to return to its launch 
position from the top of the trajectory is equal to the time 
interval Δttop it takes to travel from the launch position to 
the top. I can therefore use the Δttop expression I found in 
Example 10.5 to solve this problem.

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions
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Example 10.6 Range of projectile (cont.)
❷ DEVISE PLAN If the time interval it takes the ball 
to travel from its launch position to the top is Δttop, then 
the time interval the ball is in the air is 2Δttop. Because 
the ball travels at constant velocity in the horizontal 
direction, I can use Eq. 10.19 to obtain the ball’s range.

© 2015 Pearson Education, Inc.
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dimensions
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Example 10.6 Range of projectile (cont.)
❸ EXECUTE PLAN From Example 10.5, I have 
Δttop = υy,i/g, and so the time interval spent in the air is 
Δtflight = 2υy,i/g. Substituting this value into Eq. 10.19 
yields

© 2015 Pearson Education, Inc.
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dimensions

  
xf = 0+υx ,i

2υ y ,i

g

⎛

⎝⎜
⎞

⎠⎟
=

2υx ,iυ y ,i

g
.✔

or xf =
2vi cos ✓vi sin ✓

g

=
v

2
i sin 2✓

g
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Example 10.6 Range of projectile (cont.)
❹ EVALUATE RESULT Because the trajectory is an 
inverted parabola, the top of the parabola lies midway 
between the two locations where the parabola intercepts 
the horizontal axis. So the location at which the parabola 
returns to the horizontal axis lies a horizontal distance 
twice as far from the origin as the horizontal distance at 
the top. In Example 10.5 I found that xtop = υx,iυy,i/g. The 
answer I get for the horizontal range is indeed twice this 
value.

© 2015 Pearson Education, Inc.

Section 10.7: Projectile motion in two
dimensions
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A baseball player hits a fly ball that has an initial 
velocity for which the horizontal component is 30 m/s 
and the vertical component is 40 m/s. What is the 
speed of the ball at the highest point of its flight?

1.
2. Zero
3. 30 m/s
4. 40 m/s

© 2015 Pearson Education, Inc.
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Question 6

 [(30 m/s)2 + 40 m/s)2]1/2



Slide 10-92

A baseball player hits a fly ball that has an initial 
velocity for which the horizontal component is 30 m/s 
and the vertical component is 40 m/s. What is the 
speed of the ball at the highest point of its flight?
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2. Zero
3. 30 m/s
4. 40 m/s

© 2015 Pearson Education, Inc.

Section 10.7
Question 6

 [(30 m/s)2 + 40 m/s)2]1/2
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What is the shape of the path of an object launched at 
an angle to the vertical, assuming that only the force 
of gravity is exerted on the object?

1. A straight line
2. A harmonic curve
3. A parabola
4. None of the above

© 2015 Pearson Education, Inc.

Section 10.7
Question 7
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What is the shape of the path of an object launched at 
an angle to the vertical, assuming that only the force 
of gravity is exerted on the object?

1. A straight line
2. A harmonic curve
3. A parabola
4. None of the above
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• We know:

• These are parametric equations x(t) and y(t)
• We should be able to eliminate t!
• Given vx,i = vi cos θ and vy,i = vi sin θ …

• Parabolic path! Presumes launch from (0,0).
© 2015 Pearson Education, Inc.
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  yf = yi +υ y ,iΔt − 1
2 g(Δt)2   (constant acceleration)

xf = xi + υx,iΔt (constant velocity)

y(x) = (
tan ✓

)
x-

gx

2

2v

2
i cos

2
✓
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Section Goal
You will learn to
• Apply the conservation of momentum equations to 

collisions in two dimensions.

© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions
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• As we saw in Chapter 5, momentum conservation states that 
the momentum of an isolated system of colliding objects does 
not change, or

• Momentum is a vector, so in two dimensions momentum 
change must be expressed in terms of the components. 

• Conservation of momentum in two dimensions is given by
Δpx = Δp1x + Δp2x = m1(υ1x,f – υ1x,i) + m2(υ2x,f – υ2x,i) = 0
Δpy = Δp1y + Δp2y = m1(υ1y,f – υ1y,i) + m2(υ2y,f – υ2y,i) = 0

as with motion equations and forces:
perpendicular axes are treated completely separately

© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions

   Δ
p = 0.
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Section Goal
You will learn to
• Understand that the work done by gravity is 

independent of path.
• Define the scalar product of two vectors. 
• Associate work done by nondissipative forces with 

the scalar product of the force vector and the 
displacement vector.

© 2015 Pearson Education, Inc.

Section 10.9: Work as the product of two vectors
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Section 10.9: Work as the product of two vectors

• Consider a block sliding down an 
incline as shown (ignore friction).

• The x component of the force of 
gravity is what causes the block to 
accelerate

• The magnitude of the resulting 
acceleration is

  FEbx
G = FEb

G sinθ = +mg sinθ

  
ax =

∑Fx

m
=
∑Eb x

G

m
= +mg sinθ

m
= +g sinθ
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Section 10.9: Work as the product of two vectors

• As illustrated in the figure, the block begins at rest (υx,i = 0) at position 
xi = 0 and drops a height h. 

• The displacement along the incline is Δx = +h/sinθ.
• The time the block takes to cover this distance is obtained from 

Equation 3.7:   Δx =υx ,iΔt + 1
2 ax (Δt)2 = 0+ 1

2 g sinθ(Δt)2

  
(Δt)2 = 2h

g sin2θ
from which we obtain
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• Using Equation 3.4 and Equation 10.25, the blocks final kinetic 
energy is then

• Substituting in for time:

• Because the blocks initial kinetic energy is zero, we get

• We can get the same result by using the work equation:

• only portion of force parallel to displacement matters!© 2015 Pearson Education, Inc.

Section 10.9: Work as the product of two vectors

  
1
2 mυx ,f

2 = 1
2 m(υx ,i + axΔt2 ) = 1

2 m(0+ g sinθ  Δt)2

  =
1
2 mg 2 sin2θ(Δt)2

  
1
2 mυx ,f

2 = 1
2 mg 2 sin2θ 2h

g sin2θ
⎛
⎝⎜

⎞
⎠⎟
= mgh

  W = ΔK = Kf  – Ki  =
1
2 mυx ,f

2 – 0 = mgh

  
W = FEb x

G Δx = (+mg sinθ ) + h
sinθ

⎛
⎝⎜

⎞
⎠⎟
= mgh
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• If the angle between    and    is ϕ, the scalar product of the 
two vectors is

• The scalar product is commutative:

© 2015 Pearson Education, Inc.

Section 10.9: Work as the product of two vectors

   

A ⋅

B ≡ ABcosφ

   

A ⋅

B ≡

B ⋅

A = ABcosφ = BAcosφ

  

A   


B

Physically?
Projecting out component of 
one vector parallel to another!

(A)*(parallel part of B)
(B)*(parallel part of A)
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Under what circumstances could the scalar product of 
two vectors be zero?

1. When the vectors are parallel to each other
2. When the vectors are perpendicular to each other
3. When the vectors make an acute angle with each 

other
4. None of the above

© 2015 Pearson Education, Inc.

Section 10.9
Question 8
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Under what circumstances could the scalar product of 
two vectors be zero?

1. When the vectors are parallel to each other
2. When the vectors are perpendicular to each other
3. When the vectors make an acute angle with each 

other
4. None of the above
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• We can write work as a scalar product:

• The normal force does no work, because ϕ = 90o between the 
normal force and the force displacement. 

• The work done by gravity on the block is 

© 2015 Pearson Education, Inc.

Section 10.9: Work as the product of two vectors

   W =

F ⋅ ΔrF   (constant nondissipative force)

   
W =


FEb

G ⋅ ΔrF = (mg)
h

sinθ
⎛
⎝⎜

⎞
⎠⎟

cosφ

where θ is the angle of the incline. 

• However, since ϕ = π/2 – θ, cos ϕ = sin ϕ, so W = mgh. 
• If force and force displacement are opposite (ϕ = 180o), then work 

is negative.
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Consider a ball sliding down an incline with negligible friction:

• If the closed system = ball + Earth, ΔKb + ΔUG = 0
• If the closed system = ball, then ΔKb = W, where W = mgh is work done 

by gravity. 
© 2015 Pearson Education, Inc.
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Section 10.9: Work as the product of two vectors

• Let us generalize the previous 
result to forces that are not 
constant,

• Start by subdividing the force 
displacement       into many small 
fragments         Work done by a 
variable force          over a small 
displacement is

• The work done over the entire 
force displacement is:

   Wn ≈

F(rn ) ⋅δ rFn

   

F(r ).

   δ
rFn.

   

F(r )

  Δ
rF

   
W =


F(r ) ⋅d r   (variable nondissipative force)ri

rf∫
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Section Goal
You will learn to
• Understand that the work done by gravity is 

independent of path.
• Define the scalar product of two vectors. 
• Associate work done by nondissipative forces with 

the scalar product of the force vector and the 
displacement vector.

© 2015 Pearson Education, Inc.
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Section 10.10: Coefficients of Friction

• Let us now develop a quantitative 
description of friction:

• The figure illustrates the following 
observations.
• The maximum force of static 

friction exerted by a surface on 
an object is proportional to the 
force with which the object 
presses the surface. 

• The force of static friction does 
not depend on the contact 
area.***

*** so long as the surfaces are otherwise the same
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Section 10.10: Coefficients of Friction

• As we have just determined, the maximum 
magnitude of the static friction force must be 
proportional to       as seen in the figure.

• Therefore, for any two surfaces 1 and 2 we 
have

• The unitless proportionality constant µs is 
called the coefficient of static friction. 

• This upper limit means that the magnitude of 
static friction must obey the following 
condition:

   

Fsb

n ,

  (F12
s )max = µs F12

n

  F12
s ≤ µs F12

n
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Procedure: Working with frictional forces
1.   Draw a free-body diagram for the object of interest. 

Choose your x axis parallel to the surface and the y
axis perpendicular to it, then decompose your forces 
along these axes. Indicate the acceleration of the 
object.

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction
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Procedure: Working with frictional forces
2. The equation of motion in the y direction allows you 

to determine the sum of the y components of the 
forces in that direction:

Constraint: Unless the object is accelerating in the 
normal direction, ay = 0. 

Substitute the y components of the forces from your 
free-body diagram. The resulting equation allows 
you to determine the normal force.

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction

  Fy = may .∑



Slide 10-114

Procedure: Working with frictional forces
3. The equation of motion in the x direction is 

Constraint: If the object is not accelerating along 
the surface, ax = 0. 

Substitute the x components of the forces from your 
free-body diagram. The resulting equation allows 
you to determine the frictional force.

© 2015 Pearson Education, Inc.
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  Fx = max .∑
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Procedure: Working with frictional forces
4. If the object is not slipping, the normal force and the 

force of static friction should obey Inequality 10.54.

© 2015 Pearson Education, Inc.
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Example 10.8 Pulling a friend up a hill
A hiker is helping a friend up a hill that makes an angle 
of 30o with level ground. The hiker, who is farther up 
the hill, is pulling on a cable attached to his friend. The 
cable is parallel to the hill so that it also makes an angle 
of 30o with the horizontal. If the coefficient of static 
friction between the soles of the hiker’s boots and the 
surface of the hill is 0.80 and his inertia is 65 kg, what is 
the maximum magnitude of the force he can exert on 
the cable without slipping?

© 2015 Pearson Education, Inc.
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Example 10.8 Pulling a friend up a hill (cont.)
❶ GETTING STARTED I begin by making a sketch and 
drawing the free-body diagram for the hiker (Figure 10.43). I 
chose an x axis that points up the hill and the y axis perpendicular 
to it.

© 2015 Pearson Education, Inc.
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Example 10.8 Pulling a friend up a hill (cont.)
❶ GETTING STARTED The forces exerted on the hiker are a 
force      exerted by the cable and directed down the hill (this 
force forms an interaction pair with the force the hiker exerts on 
the cable), the force of gravity     , and the contact force exerted 
by the surface of the hill on the hiker.

© 2015 Pearson Education, Inc.
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Fch

c

   

FEh

G
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Example 10.8 Pulling a friend up a hill (cont.)
❶ GETTING STARTED This last force has two components: 
the normal force and the force of static friction     . The force 
of static friction is directed up the hill. If the hiker is not to slip, 
his acceleration must be zero, and so the forces in the normal (y) 
and tangential (x) directions must add up to zero.

© 2015 Pearson Education, Inc.
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Fsh

n
   

Fsh

s
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Example 10.8 Pulling a friend up a hill (cont.)
❷ DEVISE PLAN Following the suggested procedure, 
I’ll write the equation of motion along the two axes, 
setting the acceleration in each direction to zero. 

Then I use Inequality 10.54 to determine the maximum 
force that the hiker can exert without slipping.

© 2015 Pearson Education, Inc.
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Example 10.8 Pulling a friend up a hill (cont.)
❸ EXECUTE PLAN Because the 
magnitude of the force of gravity exerted 
on the hiker is mg, I have in the y direction

where the minus sign in –mg cos θ
indicates that is in the negative y
direction.

© 2015 Pearson Education, Inc.
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  FEh y
G

  Fy = FEh y
G∑ + Fsh

n = –mg cosθ + Fsh
n = may = 0

  Fsh
n = mg cosθ

θ
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Example 10.8 Pulling a friend up a hill (cont.)
❸ EXECUTE PLAN Likewise, I have in the x direction

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction

  Fx = FEh x
G∑ + Fsh

s – Fch
c

  = –mg sinθ + Fsh
s – Fch

c = max = 0

  Fsh
s = mg sinθ + Fch

c

θ
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Example 10.8 Pulling a friend up a hill (cont.)
❸ EXECUTE PLAN If the hiker is not to slip, the force 
of static friction must not exceed its maximum value. 
Substituting and using Inequality 10.54, I get

© 2015 Pearson Education, Inc.
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mg sinθ + Fch
c ≤ µs(mg cosθ )

Fch
c ≤ mg(µs cosθ – sinθ ).
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Example 10.8 Pulling a friend up a hill (cont.)
❸ EXECUTE PLAN The problem asks me about the 
magnitude      of the force exerted by the hiker on the 
cable, which is the same as the magnitude of the force 
exerted by the cable on the hiker, so

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction

  Fhc
c

  Fch
c

  Fhc
c ≤ mg(µs cosθ – sinθ ).
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Example 10.8 Pulling a friend up a hill (cont.)
❸ EXECUTE PLAN Substituting the values given, I 
obtain

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction

  

Fhc
c ≤ (65 kg)(9.8 m/s2 )(0.80 cos 30° – sin30°)

=1.2 ×  102  N.✔
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Example 10.8 Pulling a friend up a hill (cont.)
❹ EVALUATE RESULT A force of 1.2 × 102 N 
corresponds to the gravitational force exerted by Earth on 
an object that has an inertia of only 12 kg, and so the 
hiker cannot pull very hard before slipping. I know from 
experience, however, that unless I can lock a foot behind 
some solid object, it is impossible to pull hard on an 
inclined surface, and thus the answer I obtained makes 
sense.

© 2015 Pearson Education, Inc.
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Example 10.9 Object accelerating on a 
conveyor belt

While designing a conveyor belt system for a new 
airport, you determine that, on an incline of 20o, the 
magnitude of the maximum acceleration a rubber belt 
can give a typical suitcase before the suitcase begins 
slipping is 4.0 m/s2. What is the coefficient of static 
friction for a typical suitcase on rubber?

© 2015 Pearson Education, Inc.
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Example 10.9 Object accelerating on a 
conveyor belt (cont.)
❶ GETTING STARTED: I begin by making a sketch and drawing a 
free-body diagram for the suitcase, choosing the x axis along the 
conveyor belt in the direction of acceleration and the y axis upward and 
perpendicular to it (Figure 10.44). I also draw the upward acceleration 
of the suitcase along the incline.

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction



Slide 10-129

Example 10.9 Object accelerating on a 
conveyor belt (cont.)

❷ DEVISE PLAN As in Example 10.8, I write out the 
equation of motion along both axes. The x component 
of the acceleration is ax = +a, where the magnitude of 
the acceleration is a = 4.0 m/s2. I can then use Inequality 
10.54 to determine the coefficient of static friction.

© 2015 Pearson Education, Inc.
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Example 10.9 Object accelerating on a 
conveyor belt (cont.)

❸ EXECUTE PLAN The equations of motion in the x
and y directions are

with m the inertia of the suitcase.

© 2015 Pearson Education, Inc.
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  ΣFx = FEs x
G + Fbs

s = –mg sinθ + Fbs
s = max

  ΣFy = FEs y
G + Fbs

n = –mg cosθ + Fbs
n = may = 0,

(1)

(2)
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Example 10.9 Object accelerating on a 
conveyor belt (cont.)

❸ EXECUTE PLAN If ax represents the maximum 
acceleration at which the suitcase does not slip, the 
force of static friction must be maximum. Substituting 
Eq. 10.46 for  max into Eq. 1, I get

© 2015 Pearson Education, Inc.
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  (Fbs
s )

  –mg sinθ + µs Fbs
n = m(+a).
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Example 10.9 Object accelerating on a 
conveyor belt (cont.)

❸ EXECUTE PLAN Solving this equation for µs and 
substituting  from Eq. 2, I obtain

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction

  Fbs
n = mg cosθ

  

µs =
ma + mg sin θ

mg cos θ
= a + g sin θ

g cos θ

= (4.0 m/s2 )+ (9.8 m/s2 )sin20°
(9.8 m/s2 )(cos20°)

= 0.80.✔
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Example 10.9 Object accelerating on a 
conveyor belt (cont.)

❹ EVALUATE RESULT From Table 10.1, I see that 
the value I obtained for the coefficient for static friction 
is close to the coefficient for rubber against rubber and 
therefore reasonable. I also note that the inertia m of the 
suitcase, which is not given, drops out of the final result.

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction
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• Once surfaces start to slip relative to each other, the 
force of kinetic friction is relative to the normal force

where µk is called the coefficient of kinetic friction. 
• The kinetic coefficient µk is always smaller then µs. 
• Other than this, problem solving proceeds the same 

way 

© 2015 Pearson Education, Inc.

Section 10.10: Coefficients of Friction

  F12
k = µk F12

n
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Concepts: Vectors in two dimensions
• To add two vectors    and   , place the tail of at the 

head of    .Their sum is the vector drawn from tail of    
to the head of   .

• To subtract    from   , reverse the direction of    and 
then add the reversed    to   .  

• Any vector    can be written as

where Ax and Ay are the components of     along the x
and y axes. 
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Chapter 10: Summary
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Quantitative Tools: Vectors in two dimensions
• The magnitude of any vector    is

and the angle θ that    makes with the positive x axis is given by

• If                  is the vector sum of    and   , the component of    are

• The scalar product of two vectors    and    that make an angle ϕ
when placed tail to tail is
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Chapter 10: Summary
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Concepts: Projectile motion in two dimensions
• For a projectile that moves near Earth’s surface and 

experiences only the force of gravity, the acceleration 
has a magnitude g and is directed downward.

• The projectile’s horizontal acceleration is zero, and 
the horizontal component of its velocity remains 
constant. 

• At the highest point in the trajectory of a projectile, 
the vertical velocity component υy is zero, but the 
vertical component of the acceleration is g and is 
directed downward. 

© 2015 Pearson Education, Inc.

Chapter 10: Summary
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Quantitative Tools: Projectile motion in two 
dimensions
• If a projectile is at a position (x, y), its position vector is

• If a projectile has position components xi and yi and velocity 
components υx,i and υy,i at one instant, then its acceleration, velocity, 
and position components a time interval Δt later are 

© 2015 Pearson Education, Inc.

Chapter 10: Summary

  
r

   
r = xî + yĵ.

  

ax = 0
ay = –g
υx ,f =υx ,i

υ y ,f =υ y ,i – gΔt
xf = xi +υx ,iΔt

yf = yi +υ y ,iΔt – 1
2 g(Δt)2
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Concepts: Collisions and momentum in two 
dimensions

• Momentum is a vector, so in two dimensions its 
changes in momentum must be accounted for by 
components. 

• This means two equations, one for the x component 
and one for the y component of momentum. 

• The coefficient of restitution is a scalar and is 
accounted for by a single equation. 

© 2015 Pearson Education, Inc.

Chapter 10: Summary
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Quantitative Tools: Collisions and momentum 
in two dimensions

Δpx =Δp1x + Δp2x = m1(υ1x,f – υ1x,i) + m2(υ2x,f – υ2x,i) = 0
Δpy =Δp1y + Δp2y = m1(υ1y,f – υ1y,i) + m2(υ2y,f – υ2y,i) = 0

© 2015 Pearson Education, Inc.

Chapter 10: Summary
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Concepts: Forces in two dimensions
• In two-dimensional motion, the component of the acceleration 

parallel to the instantaneous velocity changes the speed and the 
component of the acceleration perpendicular to the 
instantaneous velocity changes the direction of the 
instantaneous velocity. 

• When choosing a coordinate system for a problem dealing 
with an accelerating object, if possible make one of the axes 
lie along the direction of the acceleration.

© 2015 Pearson Education, Inc.

Chapter 10: Summary
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Concepts: Friction
• When two surfaces touch each other, the component 

of the contact force perpendicular (normal) to the 
surfaces is called the normal force and the 
component parallel (tangential) to the surfaces is 
called the force of friction.

• The direction of the force of friction is such that the 
force opposes relative motion between the two 
surfaces. When the surfaces are not moving relative 
to each other, we have static friction.

© 2015 Pearson Education, Inc.
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Concepts: Friction
• When the forces are moving relative to each other, we 

have kinetic friction.

• The magnitude of the force of kinetic friction is 
independent of the contact area and independent of 
the relative speeds of the two surfaces.

© 2015 Pearson Education, Inc.

Chapter 10: Summary
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Quantitative Tools: Friction
• The maximum magnitude of the force of static friction between any 

two surfaces 1 and 2 is proportional to the normal face:

where µs is the unitless coefficient of static friction. This upper 
limit means that the magnitude of the frictional force must obey the 
condition

• The magnitude of the force of kinetic friction is also proportional to 
the normal face:

where µk≤ µs is the unitless coefficient of kinetic friction.
© 2015 Pearson Education, Inc.

Chapter 10: Summary

  (F12
s )max = µs F12

n ,

  F12
s ≤ µs F12

n.

  F12
k ≤ µk F12

n ,
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Concepts: Work
• For a sliding object, the normal force does no work 

because this force is perpendicular to the direction of 
the object’s displacement.

• The force of kinetic friction is a nonelastic force and 
thus causes energy dissipation.

• The force of static friction is an elastic force and so 
causes no energy dissipation.

• The work done by gravity is independent of path.

© 2015 Pearson Education, Inc.

Chapter 10: Summary
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Quantitative Tools: Work
• The work done by a constant nondissipative force when the 

point of application of the force undergoes a displacement
is

• The work done by a variable nondissipative force when the 
point of application of the force undergoes a displacement is

• This is the line integral of the force over the path traced out by 
the point of application of the force.

© 2015 Pearson Education, Inc.

Chapter 10: Summary

  Δ
rF

   W =

F ⋅ ΔrF .

   W = ∫ ri

rf

F(r ) ⋅dr .
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Quantitative Tools: Work
• For a variable dissipative force, the change in the 

thermal energy is 

• When an object descends a vertical distance h, no 
matter what path it follows, the work gravity does on 
it is

W = mgh.

© 2015 Pearson Education, Inc.

Chapter 10: Summary

   ΔEth = – ∫ ri

rf

F(rcm ) ⋅drcm .
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Example 10.7 Pucks colliding
Pucks 1 and 2 slide on ice and collide. The inertia of 
puck 2 is twice that of puck 1. Puck 1 initially moves at 
1.8 m/s; puck 2 initially moves at 0.20 m/s in a direction 
that makes an angle of 45o with the direction of puck 1. 
After the collision, puck 1 moves at 0.80 m/s in a 
direction that makes an angle of 60o with its original 
direction. What are the speed and direction of puck 2 
after the collision?

© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions
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Example 10.7 Pucks colliding (cont.)
❶ GETTING STARTED Because it takes place on a surface, 
the collision is two-dimensional. I begin by organizing the given 
information in a sketch (Figure 10.33). I let puck 1 move along 
the x axis before the collision. Then I add puck 2, which initially 
moves at an angle of 45o to the x axis.

© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions
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Example 10.7 Pucks colliding (cont.)
❶ GETTING STARTED I draw puck 1 after the collision moving 
upward and to the right along a line that makes an angle of 60o with 
the x axis. I don’t know anything about the motion of puck 2 after the 
collision, and so I arbitrarily draw it moving to the right and upward. 
I label the pucks and indicate the speeds I know. I need to determine 
the final speed υ2f of puck 2 and the angle θ between its direction of 
motion after the collision and the x axis.

© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions
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Example 10.7 Pucks colliding (cont.)
❷ DEVISE PLAN Equations 10.21 and 10.22 give the 
relationship between the initial and final velocities of 
the two pucks. I know the x and y components of both 
initial velocities and, after decomposing       the x and y
components of the final velocity of puck 1. Thus 
I can use Eqs. 10.21 and 10.22 to obtain values for the 
two components of        Using these component values, 
I can calculate υ2f and θ.

© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions

  

υ1f ,

  

υ2f .



Slide 10-152

Example 10.7 Pucks colliding (cont.)
❸ EXECUTE PLAN The two unknown components 
are υ2x,f and υ2y,f. Solving Eq. 10.21, for υ2x,f, I get

[(0.80 m/s) cos 65o – (1.8 m/s)]

+ (0.20 m/s) cos 45o

= 0.84 m/s.
© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions

  
υ2x ,f = –

m1

m2

(υ1x ,f –υ1x ,i )+υ2x ,i

 
= – 1

2
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Example 10.7 Pucks colliding (cont.)
❸ EXECUTE PLAN Solving Eq. 10.22 for υ2y,f , I get

(0.80 m/s) sin 60o + (0.20 m/s) sin 45o

= – 0.21 m/s.
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Section 10.8: Collisions and momentum in two 
dimensions

  
υ2y ,f = –

m1

m2

(υ1y ,f –υ1y ,i )+υ2y ,i = –
m1

m2

υ1y ,f +υ2y ,i

 
= – 1

2
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Example 10.7 Pucks colliding (cont.)
❸ EXECUTE PLAN Using these values, I obtain the 
final speed of puck 2 and its direction of motion:

= 0.87 m/s

or θ = –14o. 
© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions

  υ2f = υ2x ,f
2 +υ2 y ,f

2 = (0.84 m/s)2 + (–0.21 m/s)2

  
tan  θ =

υ2y ,f

υ2x ,f

= –0.21 m/s
0.84 m/s

= –0.24

✔

✔
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Example 10.7 Pucks colliding (cont.)
❹ EVALUATE RESULT My positive result for υ2x,f
and negative result for υ2y,f tell me that after the 
collision, puck 2 moves in the positive x direction and 
the negative y direction. Both of these directions make 
sense: I can see from my sketch that the x component 
of the velocity of puck 1 decreases in the collision. 
The corresponding decrease in the x component of its 
momentum must be made up by an increase in the x
component of the momentum of puck 2.

© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions
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Example 10.7 Pucks colliding (cont.)
❹ EVALUATE RESULT Given that puck 2 initially 
moves in the positive x direction, it must continue to do 
so after the collision. In the y direction, I note that 
because υ1y,i is zero, the y component of the momentum 
of puck 1 increases in the positive y direction by an 
amount m1υ1y,f = m1[(0.80 m/s) sin 60o] = m1(0.69 m/s). 
Therefore the y component of the momentum of puck 2 
must undergo a change of equal amount in the negative 
y direction.
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Section 10.8: Collisions and momentum in two 
dimensions
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Example 10.7 Pucks colliding (cont.)
❹ EVALUATE RESULT Because the initial y
component of the momentum of puck 2 is smaller than 
this value, m2υ2y,i = 2m1υ2y,i = 2m1[(0.20 m/s) sin 45o] = 
m1(0.28 m/s), puck 2 must reverse its direction of 
motion in the y direction, yielding a negative value for 
υ2y,f, in agreement with what I found.

© 2015 Pearson Education, Inc.

Section 10.8: Collisions and momentum in two 
dimensions
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Checkpoint 10.10

Is the collision in Example 10.7 elastic?10.10


