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Section Goal
You will learn to
• Compute the rotational inertia for collections of 

particles and extended objects.
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Section 11.6: Rotational inertia of extended 
objects
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Section 11.6: Rotational Inertia of extended 
objects

• To apply the concepts of rotational 
inertia to extended objects as seen in 
the figure (part a), imagine breaking 
down the object to small segments 
(part b).

• The rotational kinetic energy of the 
object is the sum of the kinetic 
energies of these small elements:

• Using υ = rω, we get
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• Using the definition of rotational inertia, we get

• Therefore, the rotational inertia of the extended object 
is given by

• In the limit δmn → 0, the sum becomes
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Section 11.6: Rotational Inertia of extended 
objects
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Example 11.8 Rotational inertia of a hoop 
about an axis through its center

Calculate the rotational inertia of a hoop of inertia m
and radius R about an axis perpendicular to the plane of 
the hoop and passing through its center.
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Section 11.6: Rotational inertia of extended 
objects
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Section 11.6: Rotational inertia of extended 
objects

Example 11.8 Rotational inertia of a hoop 
about an axis through its center (cont.)

❶ GETTING STARTED I begin 
by drawing the hoop and a 
coordinate system (Figure 11.36). 
Because the axis goes through the 
center of the hoop, I let the origin 
be at that location. The axis of 
rotation is perpendicular to the 
plane of the drawing and passes 
through the origin.



Example 11.8 Rotational inertia of a hoop 
about an axis through its center (cont.)

❷ DEVISE PLAN Equation 11.43 gives the rotational inertia 
of an object as the sum of the contributions from many small 
segments. If I divide the hoop into infinitesimally small 
segments each of inertia dm, I see that each segment lies the 
same distance r = R from the rotation axis (one such segment 
is shown in Figure 11.36). This means I can pull the constant 
r2 = R2 out of the integral in Eq. 11.43, making it easy to 
calculate.
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Section 11.6: Rotational inertia of extended 
objects

  
I = lim

δmn→0
δmnrn

2

n
∑ ≡ r 2 dm∫ (extended object)



Example 11.8 Rotational inertia of a hoop 
about an axis through its center (cont.)

❸ EXECUTE PLAN Substituting r = R in Eq. 11.43, I 
obtain
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Section 11.6: Rotational inertia of extended 
objects

  I = r 2 dm = R2 dm = mR2∫∫ .✔



Example 11.8 Rotational inertia of a hoop 
about an axis through its center (cont.)

❹ EVALUATE RESULT This result makes sense 
because all the material contained in the hoop lies at the 
same distance R from the rotation axis. Therefore the 
rotational inertia of the hoop is the same as that of a 
particle of inertia m located a distance R from the 
rotation axis, which I know from Eq. 11.30: I = mR2.
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Section 11.6: Rotational inertia of extended 
objects



Example 11.9 Rotational inertia of a rod about 
an axis through its center

Calculate the rotational inertia of a uniform solid rod of 
inertia m and length ℓ about an axis perpendicular to the 
long axis of the rod and passing through its center.
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Section 11.6: Rotational inertia of extended 
objects



Example 11.9 Rotational inertia of a rod about 
an axis through its center (cont.)
❶ GETTING STARTED I begin with a sketch of the rod. For this 
one-dimensional object, I choose an x axis that lies along the rod’s 
long axis, and because the rotation being analyzed is about a 
rotation axis located through the rod’s center, I choose this point 
for the origin of my x axis (Figure 11.37).
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Section 11.6: Rotational inertia of extended 
objects



Example 11.9 Rotational inertia of a rod about 
an axis through its center (cont.)

❷ DEVISE PLAN Because the rod is a uniform one-
dimensional object, I can use Eq. 11.44 to calculate its 
rotational inertia. First I determine the inertia per unit 
length λ. Then I carry out the integration from one end 
of the rod (x = – ℓ/2) to the other (x = +ℓ/2).
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Section 11.6: Rotational inertia of extended 
objects



Example 11.9 Rotational inertia of a rod about 
an axis through its center (cont.)

❸ EXECUTE PLAN The inertia per unit length is λ = m/ℓ. 
That gives dm = λ dx. Substituting this expression and the 
integration boundaries into Eq. 11.44, 
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Section 11.6: Rotational inertia of extended 
objects
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Example 11.9 Rotational inertia of a rod about 
an axis through its center (cont.)

❹ EVALUATE RESULT If I approximate each half of 
the rod as a particle located a distance ℓ/4 from the 
origin I chose in Figure 11.37, the rotational inertia of 
the rod would be, from Eq. 11.30,
This is not too far from the value I obtained, so my 
answer appears to be reasonable.
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Section 11.6: Rotational inertia of extended 
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Section 11.6: Rotational Inertia of extended 
objects

• Sometimes you need to know the 
moment of inertia about an axis 
through an unusual position (for an 
example, position P on the object 
shown in the figure).

• You can find it if you know the 
rotational inertia about a parallel
axis through the center of mass:  

I = Icm + md2

• This relationship is called the 
parallel-axis theorem. 



Example 11.11 Rotational inertia of a rod about 
an axis through one end

Use the parallel-axis theorem to calculate the rotational 
inertia of a uniform solid rod of inertia m and length ℓ
about an axis perpendicular to the length of the rod and 
passing through one end.
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Section 11.6: Rotational inertia of extended 
objects



Example 11.11 Rotational inertia of a rod about 
an axis through one end (cont.)

❶ GETTING STARTED I first make a sketch of the rod, 
showing its center of mass and the location of the rotational 
axis (Figure 11.41). Because I am told to use the parallel-
axis theorem, I know I have to work with the rod’s center of 
mass. I know that for a uniform rod, the center of mass 
coincides with the geometric center, and so I mark that 
location in my sketch.
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Section 11.6: Rotational inertia of extended 
objects



Example 11.11 Rotational inertia of a rod about 
an axis through one end (cont.)

❷ DEVISE PLAN In Example 11.9, I determined that 
the rotational inertia about an axis through the rod’s 
center is                  For a uniform rod, the center of 
mass coincides with the geometric center, so I can use 
Eq. 11.53 to determine the rotational inertia about a 
parallel axis through one end.
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Section 11.6: Rotational inertia of extended 
objects

   I =
1

12 m2.



Example 11.11 Rotational inertia of a rod about 
an axis through one end (cont.)

❸ EXECUTE PLAN The distance between the rotation 
axis and the center of mass is              and so, with

from Example 11.9, Eq. 11.53 yields
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Section 11.6: Rotational inertia of extended 
objects
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Example 11.11 Rotational inertia of a rod about 
an axis through one end (cont.)

❹ EVALUATE RESULT I obtained the same answer 
in Checkpoint 11.10 by directly working out the 
integral.
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Section 11.6: Rotational inertia of extended 
objects
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Section Goals
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Section 12.1: Torque and angular momentum

You will learn to
• Explain the causes of rotational motion using torque 

(the rotational analog of force).
• Identify the factors that influence the ability of a force 

to rotate a rigid object. 
• Determine the net torque when multiple forces act on 

a rigid object, using the superposition principle.
• Identify and apply the conditions that cause an object 

to be in a state of rotational equilibrium. 
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• If you exert a force on the edge of stationary wheel or 
a cap of a jar tangential to the rim, it will start to 
rotate. 
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Section 12.1: Torque and angular momentum

Slide 12-25



© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

• To push a seesaw to lift a child 
seated on the opposite side as 
shown in the figure, it is best to 
push
1. as far as possible from the 

pivot, and 
2. in a direction that is 

perpendicular to the seesaw.
• But, why are these the most 

effective ways to push the 
seesaw?

• We will try to answer this in the 
next few slides.

Slide 12-26



• The ability of a force to rotate an 
object about an axis is called torque. 

• Experiments indicate that the rod in 
the figure is balanced if r1 F1 = r2 F2.

• This suggests that
torque = r⊥ F,

where r⊥ (referred to as lever arm) 
is the perpendicular distance from 
the location of force to the pivot. 

• We can see that applying the force as 
far as possible from the pivot point 
increases the torque. 

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum
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• A force is most effective at rotating the seesaw when 
it is oriented perpendicular to the seesaw.

• Reason: Only the component of the force 
perpendicular to the seesaw (F⊥ ) that causes the 
seesaw to rotate. 

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum
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(a) Draw a free-body 
diagram for the rod of the figure 
below. Let the inertia of the rod 
be negligible compared to m1 and 
m2. 
(b) Would the free-body diagram 
change if you slide object 2 to the 
left?
(c) Experiments show that when 
m1 = 2m2 the rod is balanced for 
r2 = 2r1. How is the ratio r1/r2
related the ratio m1/m2? 
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Checkpoint 12.1

12.1
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Checkpoint 12.1

• four forces on rod:
• gravity (negligible)
• downward contact forces of the two objects
• upward force by pivot

• rod is still subject to the same forces
• no change to free body diagram
• it will rotate, but free body diagram misses this!

• r1/r2 = m2/m1



(d) What would happen if 
you remove object 1?
(e) What would happen if you 
double the inertia of object 1?
(f) What would happen if you 
carefully place a penny on top of 
object 1? Let the inertia of the 
two objects be significantly larger 
than that of the penny.
(g) Is there a difference between 
what would happened in parts e
and f ?

© 2015 Pearson Education, Inc.

Checkpoint 12.1 (cont.)

12.1
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Checkpoint 12.1

• remove object 1 – that end shoots up, object 2 falls
• double object 1 – 2m1 goes down, object 2 pulled up
• penny on object 1 – no longer balanced, m1 falls
• speed of rotation is fast in e, slow in f



• Torque is the product of the magnitude of the force 
and its lever arm distance.

Two ways to determine torque:

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

torque = r⊥F = (r sin θ)Ftorque = rF⊥ = r(F sin θ) 
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• The mathematical expression for torque is 
torque = r(F sinθ)

• The effectiveness of a 
force to rotate an object
about an axis depends on
• the magnitude of the

applied force (F).
• the distance from the pivot 

to the point force is applied (r).
• the angle at which the force

is applied (θ).
© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

pivot
J

q

F
!

r!
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Torque has a sign.
• The sign of the torque depends 

on the choice of direction for 
increasing θ. 

• In the figure the torque caused 
by     is positive because it tends 
to increase θ (CCW)

• The torque caused by     is 
negative (CW)

• Therefore, the sum of the two 
torques is r1F1 – r2F2.

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum


F1


F2

For stationary objects, the sum of torques is zero.
Statics: forces and torques sum to zero.
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In the situation depicted in Figure 12.2a, you must 
continue to exert a force on the seesaw to keep the child off the 
ground. The force you exert causes a torque on the seesaw, and 
yet the seesaw’s rotational acceleration is zero. How can this be if 
torques cause objects to accelerate rotationally?
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Checkpoint 12.2

12.2
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Seesaw

© 2015 Pearson Education, Inc.

Checkpoint 12.2

• The seesaw remains at rest because the child causes a 
torque on the seesaw that is equal in magnitude to 
yours, but tends to rotate the seesaw in the opposite 
direction



You are trying to open a door that is stuck by pulling 
on the doorknob in a direction perpendicular to the 
door. If you instead tie a rope to the doorknob and 
then pull with the same force, is the torque you exert 
increased?

1. Yes
2. No

© 2015 Pearson Education, Inc.

Section 12.1
Question 1
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You are trying to open a door that is stuck by pulling 
on the doorknob in a direction perpendicular to the 
door. If you instead tie a rope to the doorknob and 
then pull with the same force, is the torque you exert 
increased?

1. Yes
2. No – perpendicular distance to pivot and force 

have not changed

© 2015 Pearson Education, Inc.

Section 12.1
Question 1
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You are using a wrench and trying to loosen a rusty 
nut. Which of the arrangements shown is most 
effective in loosening the nut? List in order of 
descending efficiency the following arrangements:

© 2015 Pearson Education, Inc.

Section 12.1
Question 2
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You are using a wrench and trying to loosen a rusty 
nut. Which of the arrangements shown is most 
effective in loosening the nut? List in order of 
descending efficiency the following arrangements:

© 2015 Pearson Education, Inc.

Section 12.1
Question 2
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Example 12.2 Torques on lever

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

Three forces are exerted on the 
lever of Figure 12.7. Forces and
are equal in magnitude, and the 
magnitude of  is half as great. 
Force     is horizontal, and     are 
vertical, and the lever makes an 
angle of 45o with the horizontal. 
Do these forces cause the lever to 
rotate about the pivot? If so, in 
which direction?


F1


F3


F2

F1

F2


F3
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

❶ GETTING STARTED I begin 
by arbitrarily choosing counter-
clockwise as the direction of 
increasing θ. With that choice of
θ,     and     cause positive torques 
about the pivot, while causes a 
negative torque. To answer the 
question, I need to determine the 
magnitude and sign of the sum of 
these three torques about the pivot.


F1


F3 

F2
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

❷ DEVISE PLAN The forces 
are not perpendicular to the long 
axis of the lever, and so I need to 
follow one of the two procedures 
shown in Figure 12.5 (in text) to 
determine the torques about the 
pivot. I arbitrarily choose to 
determine the lever arm 
distances. 
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

❷ DEVISE PLAN To determine these 
distances relative to the pivot, I make a 
sketch showing the forces and the 
perpendicular distance from the pivot to 
the line of action of each force. 
I can then get the magnitude of each 
torque by multiplying each force 
magnitude by the corresponding lever 
arm distance. Knowing the sign and 
magnitude of each torque, I can 
determine the combined effect of the 
three torques.
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

❸ EXECUTE PLAN I know that 
F1 = 2F2. My sketch tells me that 
r1⊥ = (ℓ/3)sin 45o and r2⊥ = (2ℓ/3) 
cos 45o, and so r1⊥ =    r2⊥ because 
sin 45o = cos 45o. Therefore the 
torques caused by these two forces 
about the pivot are equal in 
magnitude:
r1⊥F1 = ( r2⊥) (2F2) = r2⊥F2.1

2
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

❸ EXECUTE PLAN Because the two torques carry 
opposite signs, their sum is thus zero and their effects 
cancel. This means that the torque caused by 
determines whether or not the lever rotates and, if so, in 
which direction. Because this torque is nonzero and 
counterclockwise, the lever rotates in a counterclockwise 
direction.✔

   

F3
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

❹ EVALUATE RESULT Looking at 
Figure 12.7, I see that the two larger 
forces (    and    ) cause 
counterclockwise torques about the 
pivot, and only the smaller force   
causes a clockwise torque. Thus it 
makes sense that the lever rotates in 
the counterclockwise direction.


F1


F3


F2
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(a) Without changing the 
magnitude of any of the forces in 
Example 12.2, how must you 
adjust the direction of to 
prevent the lever from rotating? 
(b) If, instead of adjusting the 
direction of    , you adjust the 
magnitude of , by what factor 
must you change it?

© 2015 Pearson Education, Inc.

Checkpoint 12.3

12.3


F3


F3
   

F2
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Checkpoint 12.3

• could align F3 along the axis of the rod – no torque

• was balanced before. now need F2 to overcome F3

• noting F1=F3, r2⊥=2r1⊥, and r3⊥=3r1⊥:
r1⊥F1 - 2r1⊥F2 + 3r1⊥F1 = 0

• requires F2=2F1, so have to increase F2 by 4 times



Section Goals
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Section 12.2: Free rotation

You will learn to
• Extend the concept of rotation to situations where the 

axis of rotation of an object is free to move in space.
• Understand how the center of mass determines the 

axis of rotation for unconstrained objects.
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• This figure shows the free rotation of 
a wrench thrown vertically upward 
with a clockwise spin.

• Notice that the center of mass of the 
wrench executes a nearly vertical 
trajectory as it rises.

• But notice that the motion of a point 
near the handle of the wrench is 
somewhat complicated; it is neither 
circular nor linear. 

© 2015 Pearson Education, Inc.

Section 12.2: Free rotation
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• The center of mass motion of the wrench is consistent 
with free fall. Notice how the spacing of the center of 
mass location decreases slightly as it rises.

• This is the same as one would expect for a point 
particle launched upward under the influence of 
gravity.

• But, notice that the motion of the dot on the wrench 
about the center of mass is that of uniform circular 
motion. 

• This is consistent with the wrench having no external 
rotational influences after it is launched.

© 2015 Pearson Education, Inc.

Section 12.2: Free rotation
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• The analysis of this situation leads to a powerful 
generalization:

Objects that are made to rotate without external 
constraints always rotate about the center of mass.

© 2015 Pearson Education, Inc.

Section 12.2: Free rotation
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As the wrench in Figure 12.9 moves 
upward, the upward translational motion of 
its center of mass slows down. Does the 
rotation about the center of mass also slow 
down? Which way does the wrench rotate 
when it falls back down after reaching its 
highest position?

Neglecting air resistance, rotation is steady. 
Translational and rotational motions are 
uncoupled – gravity doesn’t alter rotation. It 
keeps rotating the same way.

© 2015 Pearson Education, Inc.

Checkpoint 12.4

12.4
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Section Goal
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Section 12.3: Extended free-body diagram

You will learn to
• Construct extended force diagrams that account for 

rotation of objects. 
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Procedure: Extended free-body diagram

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

1. Begin by making a standard free-body diagram for 
the object of interest (the system) to determine what 
forces are exerted on it. Determine the direction of 
the acceleration of the center of mass of the object, 
and draw an arrow to represent this acceleration.

2. Draw a cross section of the object in the plane of 
rotation (that is, a plane perpendicular to the rotation 
axis) or, if the object is stationary, in the plane in 
which the forces of interest lie.
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Procedure: Extended free-body diagram (cont.)
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Section 12.3: Extended free-body diagram

3. Choose a reference point. If the object is rotating 
about a hinge, pivot, or axle, choose that point. If the 
object is rotating freely, choose the center of mass. 
If the object is stationary, you can choose any 
reference point.
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Procedure: Extended free-body diagram (cont.)

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

3(cont.). Because forces exerted at the reference point 
cause no torque, it is most convenient to 
choose the point where the largest number of 
forces are exerted or where an unknown force 
is exerted. Mark the location of your reference 
point and choose a positive direction of 
rotation. Indicate the reference point in your 
diagram by the symbol ¤.
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Procedure: Extended free-body diagram (cont.)
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Section 12.3: Extended free-body diagram

4. Draw vectors to represent the forces that are exerted on the 
object and that lie in the plane of the drawing. Place the tail 
of each force vector at the point where the force is exerted on 
the object. Place the tail of the gravitational force exerted by 
Earth on the object at the object’s center of mass. Label each 
force. 

5. Indicate the object’s rotational acceleration in the diagram 
(for example, if the object accelerates in the positive θ
direction, write αθ > 0 near the rotation axis). If the rotational 
acceleration is zero, write αθ = 0.
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Exercise 12.3 Holding a ball

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

You hold a ball in the palm of 
your hand, as shown in Figure 
12.10. The bones in your forearm 
act like a horizontal lever pivoted 
at the elbow. The bones are held 
up by the biceps muscle, which 
makes an angle of about 15o with 
the vertical. Draw an extended 
free-body diagram for your 
forearm.
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Exercise 12.3 Holding a ball (cont.)

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram
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(a) If the biceps muscle in Figure 12.10 were attached 
farther out toward the wrist, would the torque generated by the 
muscle about the pivot get greater, get smaller, or stay the same? 
(b) As the hand is raised above the level of the elbow, so that the 
forearm makes an angle of 15o with the horizontal, does the arm’s 
capacity to lift objects increase, decrease, or stay the same?

© 2015 Pearson Education, Inc.

Checkpoint 12.5

12.5
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Checkpoint 12.5

• Bicep attached farther out? Lever arm distance 
increases, so torque generated increases

• As the arm is raised, Fmf becomes more perpendicular 
to the forearm, so torque increases. This increases 
lifting ability.



A 1-kg rock is suspended by a massless string from 
one end of a 1-m measuring stick. What is the mass of 
the measuring stick if it is balanced by a support force 
at the 0.25-m mark? Assume the stick has uniform 
density.
1. 0.25 kg
2. 0.5 kg
3. 1 kg
4. 2 kg
5. 4 kg
6. Impossible to determine

© 2015 Pearson Education, Inc.

Section 12.3
Question 3
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A 1-kg rock is suspended by a massless string from 
one end of a 1-m measuring stick. What is the mass of 
the measuring stick if it is balanced by a support force 
at the 0.25-m mark? Assume the stick has uniform 
density.

1 kg – two bits on the end (half the mass) have to 
balance the rock at a distance of 0.50 m. 

(1kg)(0.25m) = (m/2)(0.5m)

© 2015 Pearson Education, Inc.

Section 12.3
Question 3
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Section Goals

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation

You will learn to
• Extend the concept of the direction of rotation from 

rotations in a plane to three-dimensions.
• Visualize how the vector nature of rotation is 

determined when the direction of rotation and the 
direction of the axis of rotation in space are specified.

• Demonstrate how the rotational kinematic quantities, 
Δθ, ω, and α can be described using rotation vectors.
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• The case of rotations that lie in a plane is shown below.

• Notice that only an algebraic sign is needed to specify the 
direction of rotation about the axis of rotation

• The sign conventions “counterclockwise quantities are 
positive” and “clockwise quantities are negative” are used.
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• The vector description can be determined by using the
right-hand rule:

• Notice that if the fingers of the right hand are curled around 
the rotation, the thumb points in the direction of the vector 
representing the rotation.
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• The right-hand rule can be used to determine the 
vector for the rotations of two spinning disks with 
their edges touching.
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• The right-hand rule can be used to determine the vector 
directions for the rotations of two spinning disks with their edges 
in contact.

• The rotation vector for disk A points in the z-direction and has 
vector components (0, 0, A), where A is a positive number.

• The rotation vector for disk B points in the negative y-direction 
and has components (0, –B, 0) where B is a positive number.
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• The right-hand rule can be used in “reverse” to 
determine the corresponding rotation for a rotational 
vector.
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• Displacement vectors for motion commute. That means that the 
sum of several displacements is independent of the order added.

• Rotational displacements do not commute, however.

• See how the orientation of the ball is different depending on the 
order of rotation!      
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• Rotational displacements for small displacements do commute, 
however.

• See how the orientation of the ball is same for the two different 
orders of rotation.

• Implies the instantaneous rotational velocity, ω = dθ/dt, does 
commute and can be associated with a vector by the right-hand rule.
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• The vector nature of rotational velocity is given by an 
axial vector defining the direction of rotation from 
the right-hand rule and a magnitude defining the 
speed of rotation. Axial vectors have ‘handedness.’
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Suppose the rotation of top A in Figure 12.23 slows down 
without a change in the direction of its axis of rotation. (a) In 
which direction does the vector       point? (b) Can the top’s 
rotational acceleration be represented by a vector? If so, in which 
direction does this vector point?
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Checkpoint 12.7

• Since the rotation slows down, final angular velocity 
is smaller. Since       points from initial to final, it is 
opposite the direction of the angular velocity. 

• Yes, the rotational acceleration is the change in 
rotational velocity per unit time, so it points in the 
direction of 

Δ

ω

Δ

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Consider the uniformly rotating object shown below. 
If the object’s angular velocity is a vector (in other 
words, it points in a certain direction in space) is there 
a particular direction we should associate with the 
angular velocity?
1. Yes, ±x
2. Yes, ±y
3. Yes, ±z
4. Yes, some other direction
5. No, the choice is really arbitrary.

© 2015 Pearson Education, Inc.
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Consider the uniformly rotating object shown below. 
If the object’s angular velocity is a vector (in other 
words, it points in a certain direction in space) is there 
a particular direction we should associate with the 
angular velocity?
1. Yes, ±x
2. Yes, ±y
3. Yes, ±z
4. Yes, some other direction
5. No, the choice is really arbitrary.
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Consider the situation shown at left below. A puck of mass 
m, moving at speed v hits an identical puck which is 
fastened to a pole using a string of length r. After the 
collision, the puck attached to the string revolves around 
the pole. Suppose we now lengthen the string by a factor 
2, as shown on the right, and repeat the experiment. 
Compared to the angular speed in the first situation, the 
new angular speed is
1. Twice as high.
2. The same.
3. Half as much.
4. None of the above
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Consider the situation shown at left below. A puck of mass 
m, moving at speed v hits an identical puck which is 
fastened to a pole using a string of length r. After the 
collision, the puck attached to the string revolves around 
the pole. Suppose we now lengthen the string by a factor 
2, as shown on the right, and repeat the experiment. 
Compared to the angular speed in the first situation, the 
new angular speed is

Half as much – conservation of L, mvr = Iω
I is increased by doubling the radius, so ω goes down
(or: same torque due to collision, but greater rotational inertia)
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A rope supports one end of a beam as shown in Figure 
12.24. Draw the lever arm distance for the torque 
caused by the rope about the pivot.
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Answer
The lever arm distance r⊥ is the perpendicular distance 
between the pivot and the line of action of the force 
exerted by the rope on the beam, as shown in 
Figure 12.27.
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Draw a free-body diagram and an extended free-body 
diagram for (a) a door hanging on two hinges and (b) a 
bridge supported from each end, with a car positioned at 
one-quarter of the bridge’s length from one support.
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Answer
See Figure 12.28. (a) The door interacts with three objects: Earth, the top 
hinge, and the bottom hinge. Without the top hinge, the force of gravity would 
tend to rotate the door about an axis perpendicular to the door through the 
bottom hinge. 

The force exerted by the top hinge must balance the clockwise torque caused 
by the force of gravity about the axis through the bottom hinge. The horizontal 
components of the forces exerted by the hinges must cancel each other.
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Answer (cont.)
See Figure 12.28. (b) The bridge interacts with four objects: Earth, the right 
support, the left support, and the car. The upward forces from the supports 
must balance the downward gravitational forces of the car and the bridge. 

Because these forces must also counteract the counterclockwise torque caused 
by the car, the force exerted by the support closer to the car must be greater 
than the force exerted by the other support.
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Which diagram in Figure 12.25—1, 2, or 3—shows the 
alarm clock on the left after it has been rotated in the 
directions indicated by (a) 90o about the x axis and then 
90o about the y axis and (b) 90o about the y axis and 
then 90o about the x axis? Does the order of the rotation 
change your answer?
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Answer
(a) 3; (b) 2. The order of rotation does make a 
difference.
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Give the direction of the rotational velocity vector 
associated with each spinning object shown in the figure 
below.
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Answer
Wrapping the fingers of your right hand in the direction 
of spin gives rotational velocity vectors that point (a) to 
the right, (b) up, (c) out of the page, and (d) into the 
page.
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(revision …)
• 29 Mar torque 12.1-5 
• 31 Mar torque 12.6-8 
• 5Apr periodic motion 15.1-7 
• 7 Apr fluids 18.1-5 
• 12 Apr fluids 18.6-8
• 14 Apr EXAM 3
• 19 Apr waves in 1D 16.1-9
• 21 Apr waves in 2D, 3D 16.7-9, 17.1-3 
• 26 Apr gravity 13.1-8 
• 28 Apr thermal energy 20.all 
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Quantitative Tools
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Chapter 12 Torque
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Section Goals
You will learn to
• Apply Newton’s Second Law for rotation to the 

rotational motion of extended objects.
• Establish the conditions under which rotational 

angular momentum is conserved.
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Section 12.5: Conservation of angular 
momentum
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• Consider the situation shown in the figure below: A 
force     is exerted on a particle constrained to move 
in a circle. 

• The magnitude of the torque
caused by     is:

τ ≡ rF sin θ = r⊥F = rF⊥
• SI units of torque are N · m.

© 2015 Pearson Education, Inc.
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• The tangential component of force F⊥ = |Ft| causes 
the particle to have a tangential acceleration (at) given 
by

Ft = mat

• Combining equations 12.1 and 12.2 and using the 
relation at = rαt we obtain

τθ = rm(rαθ) = mr2αθ = Iαθ

where I = mr2 is the rotational inertia of the particle
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Section 12.5: Conservation of angular 
momentum
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Section 12.5: Conservation of angular 
momentum

• Now let us consider the case 
of an extended object.

• Imagine breaking down the 
object into small particles of 
inertia δmn, as shown in the 
figure. 

• Let each particle be subject 
to a torque τnθ

• Using Eq. 12.4 we can write,

τ nϑ = δmnrn
2αnϑ
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• Then, the sum of the torques on
all particles can be written as

• The sum on the left side of Eq. 12.7 contains torques 
due to external and internal forces. 

• But, the torques due to internal forces cancel out, 
giving us
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momentum
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  τ extϑ∑ = Iαϑ
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• Now lets look at the angular momentum of the 
extended object.

• Recalling from Chapter 11 that angular momentum is 
given by Lθ = Iωθ and the relation we 
get

dLθ/dt = I(dωθ’/dt) = Iα = τ

(like F=dp/dt and F=ma)
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momentum

  τ extϑ∑ = Iαϑ ,
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• If the sum of the torques caused by the external forces 
on a extended object is zero (isolated system), then 

and the object is in rotational equilibrium.

• An object in both translational and rotational 
equilibrium is said to be in mechanical equilibrium, 
and satisfies the conditions
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Section 12.5: Conservation of angular 
momentum

  
Στ extϑ  = 

dLϑ

dt
 = 0 ⇒ ΔLϑ  = 0

   Στ extϑ  = 0 and Σ

Fext  = 


0 ⇔  mechanical equilibrium

Slide 12-99



• For a system that is not in rotational equilibrium, we 
have the angular momentum law: 

where Jθ represents the transfer of angular 
momentum from the environment. 

• Jθ is called the rotational impulse given by
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Section 12.5: Conservation of angular 
momentum

   ΔLϑ = Jϑ  

  Jϑ  = (Στ extϑ )Δt  (constant torques)
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• The figure below illustrates how conservation of 
angular momentum gives rise to the angular 
momentum law and how to treat isolated and 
nonisolated systems. 
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Section 12.5: Conservation of angular 
momentum
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A figure skater stands on one spot on the ice (assumed 
frictionless) and spins around with her arms extended. 
When she pulls in her arms, she reduces her rotational 
inertia and her angular speed increases so that her 
angular momentum is conserved. Compared to her 
initial rotational kinetic energy, her rotational kinetic 
energy after she has pulled in her arms must be
1. The same.
2. Larger because she’s rotating faster.
3. Smaller because her rotational inertia is smaller.
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A figure skater stands on one spot on the ice (assumed 
frictionless) and spins around with her arms extended. 
When she pulls in her arms, she reduces her rotational 
inertia and her angular speed increases so that her 
angular momentum is conserved. Compared to her 
initial rotational kinetic energy, her rotational kinetic 
energy after she has pulled in her arms must be
1. The same.
2. Larger because she’s rotating faster. (work done 

by muscles …)
3. Smaller because her rotational inertia is smaller.
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Example 12.5 Flywheel 
A motor exerts a constant force of 120 N tangential to 
the rim of a 20-kg cylindrical flywheel of radius 0.50 m. 
The flywheel is free to rotate about an axis through its 
center and runs perpendicular to its face. If the flywheel 
is initially at rest and the motor is turned on for 2.0 s, 
how much work does the motor do on the flywheel?

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum
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Example 12.5 Flywheel (cont.)
❶ GETTING STARTED I begin by 
making a sketch of the situation to 
organize the information
(Figure 12.33). The force exerted
by the motor causes the flywheel
to start spinning, which means
the wheel’s rotational kinetic
energy changes. This is the only energy 
change in the system, and I know from the 
energy law (Eq. 9.1) that ∆E = W.
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Section 12.5: Conservation of angular 
momentum
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Example 12.5 Flywheel (cont.)
❶ GETTING STARTED Therefore ∆Krot = W, and so 
to calculate the work done by the motor, I need to 
determine this change in rotational kinetic energy. 
Because the flywheel is at rest initially, I know that 
∆Krot = Krot,f.

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum
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Example 12.5 Flywheel (cont.)
❷ DEVISE PLAN To obtain Krot,f, I can use Eq. 11.31, 
Krot =    Iω2. The rotational inertia I of the flywheel 
(which is a solid cylinder) is   mR2 (see Table 11.3). 
Because I’m interested in Krot,f, I need the final value for 
ω, the wheel’s rotational speed. How can I connect ωf to 
anything I know in this problem?
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Example 12.5 Flywheel (cont.)
❷ DEVISE PLAN The relationship between ω and 
angular momentum is                (Eq. 11.34), and I 
know from Eq. 12.16 that ∆Lθ = τθ ∆t. I know ∆t, but 
do I know anything about τ in terms of the information 
given—a force, an inertia, and a wheel radius? Yes, 
Eq. 12.1: τ = rF⊥. 

Thus my plan is to express ωf in terms of R and F and 
then use that expression for ωf in 
Krot =    Iω2 to calculate Krot,f = W.
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momentum

 Lϑ ≡ Iωϑ

1
2

Slide 12-108



Example 12.5 Flywheel (cont.)
❸ EXECUTE PLAN The magnitude of the torque caused by the 
motor is τ = RF, where R is the radius of the wheel and F is the 
magnitude of the force exerted by the motor. Equation 12.16 then 
gives

Because the initial angular momentum is zero, I know that 
∆L = Iωf = +Iωf and so I have

∆L = RF∆t = Iωf

© 2015 Pearson Education, Inc.
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momentum

  ΔLϑ = ∑τ extϑ( )Δt = +RFΔt

  
ω f =

RFΔt
I
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Example 12.5 Flywheel (cont.)
❸ EXECUTE PLAN The final rotational kinetic energy is thus

and the work done on the flywheel is
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Krot,f =

1
2

Iω f
2 = 1

2
I RFΔt

I
⎛
⎝⎜

⎞
⎠⎟

2

  
=

RFΔt( )2

2I
=

RFΔt( )2

mR2 =
FΔt( )2

m

  
W = Krot,f =

[(120 N) (2.0 s)]2

20 kg
= 2880 J = 2.9 kJ
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Example 12.5 Flywheel (cont.)
❹ EVALUATE RESULT Delivering 2.9 kJ in 2.0 s corresponds 
to a power of (2.9 kJ)/(2.0 s) = 1.4 kW, which is not an 
unreasonable amount for a large motor.
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momentum

Slide 12-111



Example 12.6 Spinning up a compact disc 
When you load a compact disc into a 
drive, a spinning conical shaft rises up 
into the opening in the center of the 
disc, and the disc begins to spin 
(Figure 12.34). Suppose the disc’s 
rotational inertia is Id, that of the shaft 
is Is, and the shaft’s initial rotational 
speed is ωi. Does the rotational kinetic 
energy of the disc-shaft system
remain constant in this process? 
Assume for simplicity that no external 
forces cause torques on the shaft.
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momentum
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Example 12.6 Spinning up a compact disc 
(cont.)
❶ GETTING STARTED I am given rotational inertias for a disc 
and a shaft, plus the initial rotational speed of the shaft, and my 
task is to determine whether or not the system’s rotational kinetic 
energy changes when these two units interact: The disc 
is initially at rest, but as the shaft comes in contact with it, the 
two exert on each other forces that cause torques.

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum

  ΔKrot = 0.
?
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Example 12.6 Spinning up a compact disc 
(cont.)
❶ GETTING STARTED The shaft speeds up the rotation of the 
disc, and the disc slows down the rotation of the shaft. The disc 
has no rotational velocity before the shaft touches it, and so 
initially all the system’s rotational kinetic energy is in the shaft. 
After they reach a common rotational speed ωf, both have 
rotational kinetic energy. I need to calculate the initial and final 
rotational kinetic energies of the shaft-disc system to answer the 
question.
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Section 12.5: Conservation of angular 
momentum
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Example 12.6 Spinning up a compact disc 
(cont.)
❷ DEVISE PLAN The rotational kinetic energy of a rotating 
object is given by Eq. 11.31,                . I know the initial 
rotational speed of the shaft and its rotational inertia, so I can use 
this equation to calculate the initial rotational kinetic energy of 
the shaft-disc system. I do not know the final rotational speed of 
the system, but I do know that because there are no external 
torques on the system, Eq. 12.13 tells me that the angular 
momentum must remain constant: ∆Lθ = 0.
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momentum

  K = 1
2 Iω 2
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Example 12.6 Spinning up a compact disc 
(cont.)
❷ DEVISE PLAN Expressing ∆Lθ as the difference between the 
final and initial values gives me an expression containing ωf and 
ωi, which means I can probably get an expression for ωf /ωi that I 
can then use to compare the ratio Krot,f /Krot,i and thereby 
determine whether or not ∆Krot = 0. 

Because the problem is stated in symbols rather than numerical 
values, my comparison will be between two algebraic 
expressions.
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Example 12.6 Spinning up a compact disc 
(cont.)
❸ EXECUTE PLAN Because the torques that the disc and shaft 
cause on each other are internal and because there are no external 
torques, I have for the system’s angular momentum

∆Lθ = (Is + Id)ωθ,f – Isωθ,i = 0  (1)
If I let the initial direction of rotation of the shaft be positive, 
ωθ,I = +ωi and so ωθ,f is also positive. Rearranging terms in Eq. 1, 
I find that the ratio of the final and initial rotational speeds is
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ω f

ω i

=
Is

Is + Id
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Example 12.6 Spinning up a compact disc 
(cont.)
❸ EXECUTE PLAN The system’s initial rotational kinetic 
energy is                 , its final rotational kinetic energy is

, and the ratio of the two is

so                                The rotational kinetic energy of the system 
is not constant. It cost energy to spin up the CD.✔

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum

  Ki =
1
2 Isω i

2

  Kf =
1
2 Is + Id( )ω f

2

  

Kf

Ki

=
1
2 ( Is + Id )

1
2 Is

ω f
2

ω i
2 =

Is

Is + Id

<1

  Kf < Ki ,  or ΔK ≠ 0.
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Example 12.6 Spinning up a compact disc 
(cont.)
❹ EVALUATE RESULT The spinning up of the disc is like an 
inelastic “rotational collision”: The disc initially at rest comes in 
contact with the spinning shaft, and the two reach a common 
rotational speed. While the disc is spinning up, some of the 
system’s initial rotational kinetic energy is converted to thermal 
energy because of friction between disc and shaft, and so it 
makes sense that the system’s rotational kinetic energy decreases.
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Section 12.5: Conservation of angular 
momentum
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Checkpoint 12.9

Consider the situation in Example 12.6. (a) Is the vector 
sum of the forces exerted by the shaft on the compact disc 
nonzero while the disc is spinning up? (b) Is the disc isolated?

12.9
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• No – a nonzero sum of forces would cause the center 
of the disc to accelerate. We know it stays put.

• No – the system is not isolated. Even though the 
vector sum of forces is zero, the individual forces 
give a nonzero torque. This causes rotational 
acceleration and an increase of its rotational kinetic 
energy.
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Section Goals
You will learn to
• Use the concepts of simultaneous translational motion 

and rotational motion of an extended object to predict 
the kinematics and dynamics for rolling motion.

• Interpret that rolling motion is an intermediate 
situation between the cases of fixed and free rotations.

• Explain how in rolling motion an object revolves 
about its geometric center.
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Section 12.6: Rolling motion
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• This figure shows the rolling motion of an object that 
moves without slipping. 

• The relationship between the displacement of the 
center of mass, ∆xcm, and the rotational displacement 
∆θ is given by

∆xcm = R∆θ
© 2015 Pearson Education, Inc.
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• The corresponding relationship between the velocity 
of the center-of-mass, νcm x, and the rotational 
velocity, ωθ, is given by

υcm x = Rωθ (rolling motion without slipping)

• This condition describes the kinematic constraint for 
an object rolling without slipping.
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Section 12.6: Rolling motion

• A point of the rim of a wheel 
that is in contact with the 
surface when rolling without 
slipping has zero instantaneous 
velocity. Static friction!

• See how a point on the rim of 
the wheel moves in a direction 
perpendicular to the surface 
before and after reaching the 
bottom.

Slide 12-125



• Now let’s consider the dynamics of rolling motion. 
Consider an object rolling down a ramp without 
slipping.
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• Rolling rather than sliding occurs in this case because 
the force of static friction exerts a torque about the 
center of the object.

• The vector sum of the forces and the center-of-mass 
acceleration are related by
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Section 12.6: Rolling motion

∑Fx = FEo x
G − Fro

s = mg  sin  θ  −  Fro
s = macm x
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• The net torque about the axis is given by

where I is the rotational inertia and α is the rotational 
acceleration.

• Solving these equations simultaneously yields (noting α=a/R)
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  ∑τ extϑ = +Fro
s R = Iαϑ

  

acm x = + g  sinθ

1+ I
mR2

= + g  sinθ
1+ c

  
Fro

s = I
R2 acm x =

cmR2

R2

g  sinθ
1+ c

= mg  sinθ
c−1 +1
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• Notice that the static friction plays a dual role in this 
analysis:
1. It decreases the center-of-mass speed and 

acceleration of the rolling object, and
2. It also causes the torque that gives the rotational 

acceleration.
• Smaller I means larger acceleration

• Smaller I reaches the bottom of the ramp first
• Sliding without friction is even faster

• Energy paid to rotation …
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A wheel rolls without slipping along a horizontal 
surface. The center of the wheel has a translational 
speed v. The lowermost point on the wheel has a 
forward velocity of magnitude
1. 2v.
2. v.
3. Zero.
4. We need more information.

© 2015 Pearson Education, Inc.
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Question 7
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A wheel rolls without slipping along a horizontal 
surface. The center of the wheel has a translational 
speed v. The lowermost point on the wheel has a 
forward velocity of magnitude
1. 2v.
2. v.
3. Zero – at that instant, it is in contact with the road 

and velocity is zero relative to the road
4. We need more information.
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Section Goal
You will learn to
• Use the concept of total mechanical energy to 

compute the total kinetic energy of an object that is in 
both translational and rotational motion.
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Section 12.7: Torque and energy

Slide 12-132



• Torques causes objects to accelerate rotationally and thus 
cause a change in their rotational kinetic energy.

• Consider the object in the figure. A force    is exerted at point 
P on the object. Using Eq. 12.10 we can write
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
F

  
∑τ extϑ = Iαϑ = I

dωϑ

dt
= I

dωϑ

dϑ
dϑ
dt

= I
dωϑ

dϑ
ωϑ

  ∑τ extϑ( )dϑ = Iωϑ  dωϑ
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• Integrating the left- and right-hand sides of Eq. 12.28, 
we will get an equation for the change in rotational 
kinetic energy:

• Non-constant torque, you have to integrate τ dθ
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  ΔKrot = (Στ extϑ )Δϑ  (constant torques, rigid object)
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• Now, if the object is in both translational and 
rotational motion, then its kinetic energy is given by

• And the change in kinetic energy is given by
∆K = ∆Kcm + ∆Krot
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Two cylinders of the same size and mass roll down an 
incline. Cylinder A has most of its weight 
concentrated at the rim, while cylinder B has most of 
its weight concentrated at the center. Which reaches 
the bottom of the incline first?
1. A
2. B
3. Both reach the bottom at the same time.
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Two cylinders of the same size and mass roll down an 
incline. Cylinder A has most of its weight 
concentrated at the rim, while cylinder B has most of 
its weight concentrated at the center. Which reaches 
the bottom of the incline first?
1. A
2. B – more mass at center = lower I = larger a
3. Both reach the bottom at the same time.
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A solid disk and a ring roll down an incline. The ring 
is slower than the disk if
1. mring= mdisk, where m is the inertial mass.
2. rring = rdisk, where r is the radius.
3. mring = mdisk and rring = rdisk.
4. The ring is always slower regardless of the relative 

values of m and r.

© 2015 Pearson Education, Inc.

Section 12.7
Question 9

Slide 12-138



A solid disk and a ring roll down an incline. The ring 
is slower than the disk if
1. mring= mdisk, where m is the inertial mass.
2. rring = rdisk, where r is the radius.
3. mring = mdisk and rring = rdisk.
4. The ring is always slower regardless of the relative 

values of m and r. Acceleration depends on I/mr2, 
which is independent of m and r.
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Example 12.8 Rolling down a ramp
A solid cylindrical object of inertia m, rotational inertia I, and 
radius R rolls down a ramp that makes an angle θ with the 
horizontal. By how much does the cylinder’s energy increase if it 
is released from rest and its center of mass drops a vertical 
distance h?
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Example 12.8 Rolling down a ramp (cont.)
❶ GETTING STARTED I am given information about 
an object in the shape of a solid cylinder—inertia, 
rotational inertia, radius, and initial speed—and my task 
is to find out how much the object’s energy has 
increased once it has rolled down a ramp such that its 
center of mass has traveled a vertical distance h.
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Example 12.8 Rolling down a ramp (cont.)
❶ GETTING STARTED The object accelerates down 
the incline under the influence of the force of gravity. I 
therefore begin by making a sketch of the situation and 
drawing both free-body and extended free-body 
diagrams (Figure 12.42). The object is subject to a 
gravitational force exerted by Earth and a contact force 
exerted by the ramp.
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Example 12.8 Rolling down a ramp (cont.)

❶ GETTING STARTED If I choose my axes as shown 
in my sketch, the contact force exerted by the ramp has 
a normal component      in the y direction and a 
tangential component      in the negative x direction due 
to static friction.
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Example 12.8 Rolling down a ramp (cont.)
❷ DEVISE PLAN As the object rolls, both its 
translational and rotational kinetic energies increase. 
Because the shape of the object does not change and 
because static friction is nondissipative, the object’s 
internal energy does not change. I can use Eq. 12.32 for 
the change in translational kinetic energy and
Eq. 12.31 for the change in rotational kinetic energy. To 
express the two factors on the right in Eq. 12.32 in 
terms of my given variables, I use the geometry of the 
situation to express both factors in terms of sin θ.
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Example 12.8 Rolling down a ramp (cont.)

❸ EXECUTE PLAN The change in translational 
kinetic energy is given by Eq. 12.32,

and the vector sum of the forces 
exerted on the object in the x direction is 
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ΔKcm = Fext x∑( )Δxcm ,

Fext x = mg sinθ − Fro
s∑
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Example 12.8 Rolling down a ramp (cont.)
❸ EXECUTE PLAN or, using Eq. 12.26, we know

Because the displacement of the object’s center of mass 
along the plane is the change in its 
translational kinetic energy is
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Slide 12-146

Fs
ro

=
mg sin ✓

1+ c-1
X

F
extx

= mg sin ✓- Fs
ro

=)
X

F
extx

= +mg sin ✓

✓
1-

1

1+ c-1

◆



Example 12.8 Rolling down a ramp (cont.)

❸ EXECUTE PLAN Next, I use Eq. 12.31 to calculate 
the change in the object’s rotational kinetic energy. 
From my extended free-body diagram I see that only the 
force of static friction causes a (positive) torque, so

I can find the object’s rotational 
displacement ∆θ from Eq. 12.18:
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Example 12.8 Rolling down a ramp (cont.)
❸ EXECUTE PLAN so, from Eq. 12.31,

where I have again used Eq. 12.26 to substitute for 
Adding the two changes in kinetic energy, I obtain
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Example 12.8 Rolling down a ramp (cont.)
❹ EVALUATE RESULT My result indicates that the object’s 
energy changes by the same amount it would change if it were 
simply in free fall! In other words, the only work done on the 
object is the work done by the gravitational force:
(see Section 10.9). 

The difference now is that this work is used for both rotational 
and translational motion, not just translational motion.

This implies that the work done by all other forces on the object 
is zero. The normal force does no work on the object because it is 
perpendicular to the displacement of the object, but what is the 
work done by the force of static friction on the object?
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Example 12.8 Rolling down a ramp (cont.)
❹ EVALUATE RESULT The object’s displacement, h/sin θ, 
lies along the line of action of the force of static friction, and so it 
is tempting to write (h/sin θ) for the work done by the force 
of static friction on the object. However, the point of application 
for      has zero velocity. At each instant, a different point on the 
object’s surface touches the ramp, but the instantaneous velocity 
of that point is zero. The force displacement for     is thus zero, so 
the work done by this force on the object is zero as well.
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Concepts: Torque
• Torque is due to the tendency of a force applied to an 

object to give a rotational acceleration.
• The SI units for torque are N • m.
• Rotational equilibrium requires the vector sum of 

the net external torque on an object equal zero.
• Mechanical equilibrium requires in addition that the 

vector sum of the net external force equal zero.

© 2015 Pearson Education, Inc.

Chapter 12: Summary

Slide 12-151



Quantitative Tools: Torque
• If    is the position vector from a pivot to the location 

at which a force     is exerted on an object and θ is the 
angle between    and    , the torque τ produced by the 
force about the pivot is

where    is the component of    perpendicular to    and
is the component of     perpendicular to  .
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Quantitative Tools: Torque

• Translational equilibrium:

• Rotational equilibrium:

• Mechanical equilibrium:
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Concepts: Rotation of a rigid object
• In free rotation an object rotates about its center of mass.
• In rotation about a fixed axis an object is constrained to rotate 

about a physical axis.
• In rolling motion without slipping there is no relative motion 

at the location where the object touches the surface.
• The external force on a rolling object changes the object’s 

center-of-mass kinetic energy.
• The external torque on a rolling object changes its rotational 

kinetic energy.
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Quantitative Tools: Rotation of a rigid object
• For both particles and extended bodies, the vector sum of the 

torques when rotation is about a fixed axis is

• For an object of radius R that is rolling without slipping, the 
motion of the center of mass is described by
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  τ extϑ∑ = Iαϑ

  

υcm x = Rωϑ

acm x = Rαϑ

Fext x∑ = macm x

τ extϑ∑ = Iαϑ
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Quantitative Tools: Rotation of a rigid object
• The change in an object’s rotational kinetic energy resulting 

from torques is

• The kinetic energy of a rolling object is

• The change in the kinetic energy of a rolling object is
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  ΔKrot = τ extϑ∑( )Δϑ    (constant torques, rigid object)
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Concepts: Angular momentum
• A rotational impulse JJis the amount of angular 

momentum transferred to a system from the 
environment by external torques.

• If the sum of the external torques due to forces 
exerted on a system is zero, the angular momentum of 
the system remains constant.
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Quantitative Tools: Angular momentum
• External torque caused by forces exerted on an object 

causes the object’s angular momentum LJto change:
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τ extϑ∑ =

dLϑ

dt
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Quantitative Tools: Angular momentum
• The angular momentum law says that the change in the 

angular momentum of an object is equal to the rotational 
impulse given to the system:

• If the constant external torques on a system last for a time 
interval Δt, the rotational impulse equation says that the 
rotational impulse is

• The law of conservation of angular momentum states that if
then dLJ/dt = 0. This means that
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 ΔLϑ = Jϑ

  Jϑ = τ extϑ∑( )Δt

  
τ extϑ∑ =

dLϑ

dt
= 0⇒ΔLϑ = 0

 τ extϑ∑ = 0,
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Concepts: Rotational quantities as vectors
• A polar vector is a vector associated with a 

displacement.
• An axial vector is a vector associated with a rotation 

direction. This vector points along the rotation axis.
• The right-hand rule for axial vectors: When you curl 

the fingers of your right hand along the direction of 
rotation, your outstretched thumb points in the 
direction of the vector that specifies that rotation.
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Concepts: Rotational quantities as vectors
• Right-hand rule for vector products: When you align 

the fingers of your right hand along the first vector in 
a vector product and curl them from that vector to the 
second vector in the product through the smaller 
angle between the vectors, your outstretched thumb 
points in the direction of the vector product. 

• The magnitude of the vector product of two vectors is 
equal to the area of the parallelogram defined by 
them.
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Quantitative Tools: Rotational quantities as 
vectors
• The magnitude of the vector product of vectors    and     that make an 

angle θ ≤ 180°between them when they are tail to tail is

• If    is the vector from the origin of a coordinate system to the location 
where a force    is exerted, the torque about the origin due to    is

• If    is the vector from the origin of a coordinate system to a particle that 
has momentum   , the angular momentum of the particle about the origin is
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