
Slide 5-1

Chapter 5 
Energy

© 2015 Pearson Education, Inc.



Slide 5-2

• Exam 1 
• relax
• ch. 2-4, 5.1-6 (heavy on 2-4)

• will be in here at the usual lecture time
• multiple choice

• mix of quantitative and qualitative

• probably about 20 questions
• will put practice problems on MasteringPhysics
• will get a formula sheet

© 2015 Pearson Education, Inc.

Various & Sundry
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Concepts

© 2015 Pearson Education, Inc.

Chapter 5: Energy
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• Below are the vx(t) curves for two carts colliding. 
• Notice that the velocity differences before and after collisions 

are highlighted.
• Relative velocity of the carts: 

is the velocity of cart 2 relative to cart 1.
• Relative speed of the carts: 

is the speed of cart 2 relative to cart 1.

© 2015 Pearson Education, Inc.

Section 5.1: Classification of collisions

  

υ12 ≡


υ2 −


υ1

  

υ12 ≡


υ2 −


υ1
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• Elastic collision: A collision in which the relative 
speeds before and after the collision are the same. 

• Inelastic collision: A collision in which the relative 
speed after the collision is lower than before the 
collision. 

• Totally inelastic collision: A special type of inelastic 
collision in which the two objects stick together (i.e., 
relative speed is reduced to zero).

© 2015 Pearson Education, Inc.

Section 5.1: Classification of collisions
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(a) An outfielder catches a baseball. Is the collision between 
ball and glove elastic, inelastic, or totally inelastic? 

totally inelastic, relative speed after is zero
(b) When a moving steel ball 1 collides head-on with a steel ball 2 at 
rest, ball 1 comes to rest and ball 2 moves away at the initial speed of 
ball 1. Which type of collision is this? 

elastic, relative speed is unchanged
(c) Is the sum of the momenta of the two colliding objects constant in 
part a? In part b?

only depends on whether interactions are outside system
a – glove interacts with player, non-isolated, sum not constant
b – ignoring friction, isolated, sum constant

© 2015 Pearson Education, Inc.

Checkpoint 5.2

5.2
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Exercise 5.1 Classifying collisions

© 2015 Pearson Education, Inc.

Section 5.1: Classification of collisions

Are the following collisions elastic, inelastic, or totally 
inelastic? 

(a) A red billiard ball moving at vr x,i = +2.2 m/s hits a 
white billiard ball initially at rest. 

After the collision, the red ball is at rest and the white 
ball moves at vw x,f = +1.9 m/s.
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Exercise 5.1 Classifying collisions (cont.)

© 2015 Pearson Education, Inc.

Section 5.1: Classification of collisions

SOLUTION
(a) The initial relative speed is 

vwr,i = |vr x,i – vw x,i| = | +2.2 m/s – 0| = 2.2 m/s

the final relative speed is 

vwr,f = | vr x,f – vw x,f  | = |0 – 1.9 m/s| = 1.9 m/s

Final is lower than the initial, which means the collision 
is inelastic.✔
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Exercise 5.1 Classifying collisions (cont.)

© 2015 Pearson Education, Inc.

Section 5.1: Classification of collisions

(b) Cart 1 moving along a track at v1x,i = +1.2 m/s hits 
cart 2 initially at rest. 

After the collision, the two carts move at v1x,f = +0.4 m/s 
and v2x,f = +1.6 m/s. 
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Exercise 5.1 Classifying collisions (cont.)

© 2015 Pearson Education, Inc.

Section 5.1: Classification of collisions

SOLUTION
(b) 
v12i = |v2x,i – v1x,i| = |0 – (+1.2 m/s)| = 1.2 m/s; 

v12f = |v2x,f – v1x,f | = | + 1.6 m/s – (+0.4 m/s)| = 1.2 m/s. 

Because the relative speeds are the same, the collision is 
elastic.✔
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Exercise 5.1 Classifying collisions (cont.)

© 2015 Pearson Education, Inc.

Section 5.1: Classification of collisions

(c) A piece of putty moving at vp x,i = +22 m/s hits a 
wooden block moving at vb x,i = +1.0 m/s. After the 
collision, the two move at vx,f = +1.7 m/s.
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Exercise 5.1 Classifying collisions (cont.)

© 2015 Pearson Education, Inc.

Section 5.1: Classification of collisions

SOLUTION

(c) After the collision, both the putty and the block 
travel at the same velocity, making their relative speed 
zero. 

It was obviously not zero before the collision. 

The collision is totally inelastic.✔
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Section Goals

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy

You will learn to
• Quantify the energy due to the motion of an object.
• Recognize that kinetic energy is a scalar quantity.
• Calculate the kinetic energy of an object from its 

inertia and speed.
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• The quantity, K = ½mv2 is called kinetic energy of the object, 
that is, “energy” associated with motion.

• Let us calculate the kinetic energy of the carts before and after 
the collisions (elastic collision and a totally inelastic collision) 
shown in the figure.

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy
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• Table 5.1 gives the initial and final kinetic energies. 
• In general we observe:

In an elastic collision, the sum of the kinetic 
energies of the object before is the same as the 
sum of kinetic energies after the collision.

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy
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Is kinetic energy an extensive quantity?

Yes – it depends on the system size. Say an object has two parts, 
1 and 2. The total kinetic energy is

K = ½(m1+m2)v2

this is equal to the sum of the kinetic energies of the two parts

K = K1 + K2 = ½m1v2 + ½m2v2

© 2015 Pearson Education, Inc.

Checkpoint 5.3

5.3
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• Because kinetic energy is a scalar extensive quantity, 
bar diagrams are a good way to visually represent 
changes in this quantity. 

• Reinforces the main idea: bookkeeping
• Diagrams below from previous collisions

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy
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Example 5.2 Carts colliding

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy

(a) Is the collision in figure below elastic, inelastic, or 
totally inelastic? How can you tell? (b) Verify your 
answer by comparing the initial kinetic energy of the 
two-cart system with the final kinetic energy.



Slide 5-19

Example 5.2 Carts colliding (cont.)

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy

❶ GETTING STARTED 
Initial and final relative speeds are the same!

à must be elastic
Does kinetic energy give the same conclusion?

|v12|
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Example 5.2 Carts colliding (cont.)

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy

❷ DEVISE PLAN momentum: need velocities of the carts to get 
relative speeds: 

v1x,i = 0; v2x,i = +0.34 m/s; v1x,f = +0.17 m/s; v2x,f = –0.17 m/s. 

kinetic energy: use K=½mv2. from the figure: 
m1 = 0.36 kg and m2 = 0.12 kg.
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Example 5.2 Carts colliding (cont.)

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy

❸ EXECUTE PLAN (a) 
v12i = |v2x,I-v1x,i | = |(+0.34 m/s) – 0| = 0.34 m/s; 
v12f = |v2x,f –v1x,f | = |(–0.17 m/s) – (+0.17 m/s)| = 0.34 m/s. 

Relative speed is unchanged, collision is elastic.✔
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Example 5.2 Carts colliding (cont.)

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy

❸ EXECUTE PLAN (b) The initial values are

so                Ki = K1i + K2i = 0.0069 kg - m2/s2.✔

  K1i =
1
2 m1υ1i

2 = 1
2 (0.36 kg)(0)2 = 0

  K2i =
1
2 m2υ2i

2 = 1
2 (0.12 kg)(0.34 m/s)2 = 0.0069 kg ⋅m2/s2
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Example 5.2 Carts colliding (cont.)

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy

❸ EXECUTE PLAN The final values are

so                Kf = (0.0052 kg - m2/s2) + (0.0017 kg - m2/s2)
= 0.0069 kg - m2/s2,

which is the same as before the collision, as it should be for an 
elastic collision.✔

  K1f =
1
2 m1υ1f

2 = 1
2 (0.36 kg)(0.17 m/s)2 = 0.0052 kg ⋅m2/s2

  K2f =
1
2 m2υ2f

2 = 1
2 (0.12 kg)(−0.17 m/s)2 = 0.0017 kg ⋅m2/s2
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Example 5.2 Carts colliding (cont.)

© 2015 Pearson Education, Inc.

Section 5.2: Kinetic energy

❹ EVALUATE RESULT Because I’ve reached the 
same conclusion—the collision is elastic—using two 
approaches, I can be pretty confident that my solution is 
correct.
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A moving cart collides with an identical cart initially at rest 
on a low-friction track, and the two lock together. What fraction 
of the initial kinetic energy of the system remains in this totally 
inelastic collision?

Could guess it is half …
Conservation of momentum:

mvi = (2m)vf à vf = ½vi

Initial K
Ki = ½mvi

2

Final K
Kf = ½(2m)vf

2 =  ¼mvi
2 = ½Ki

© 2015 Pearson Education, Inc.

Checkpoint 5.4

5.4
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Section Goals

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

You will learn to
• Describe the state of an object by specifying physical 

parameters such as shape and temperature.
• Recognize that a process is a physical transformation 

in which an object or a set of objects changes from 
one state to another.

• Distinguish reversible from irreversible processes.
• Associate an internal energy with the physical state 

of an object.
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• In all inelastic collisions, the relative speed changes and 
therefore the total kinetic energy of the system changes. 

• What happens to this energy? 
• Does it just appear from nowhere or simply vanish? 
• Let us answer this question by looking at inelastic 

collisions. 
• The state of a system is the condition of an object 

completely specified by a set of parameters such as shape 
and temperature.

• The transformation of a system from an initial state to a 
final state is called a process.

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy
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• Inelastic collisions are irreversible processes: The 
changes cannot spontaneously undo themselves.

• You cannot imagine watching it in reverse

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy
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• Elastic collisions are reversible: no permanent changes 
• You can easily imagine watching it in reverse

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy
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• Notice in the table below how the change in total kinetic 
energy goes hand in hand with a change in the state. 

• To explore this connection further let us introduce a new 
quantity called internal energy:
• In an inelastic collision one form of energy is converted to 

another form of energy (kinetic to internal).
• The sum of kinetic and internal energy remains constant

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy
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• Now we can make the following statements about collisions: 
• Inelastic collision: The states of the colliding objects 

change, the sum of their internal energies increases 
• Increase is equal to the decrease in the sum of kinetic energies. 

• Any collision: The total energy of a system of two 
colliding objects does not change during the collision.

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy
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• A change in internal energy is associated with a change 
of state (inelastic collision)

• Internal energy must somehow relate to how the object 
is made up
• a measure of the energy needed to build the object
• due to the arrangement of (and motion of) its parts
• (often intractable)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy
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Example 5.3 Internal energy change

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

• A 0.2-kg cart 1 at rest is struck by an identical cart 2 
traveling at v2x,i = +0.5 m/s. Ignore friction.

• After the collision, the velocity of cart 2 is reduced to 
v2x,f = +0.2 m/s. 

(a) Is the collision elastic, inelastic, or totally inelastic
(b) By what amount does the internal energy of the two-

cart system change? 
(c) Make a bar diagram showing the initial and final 

kinetic and internal energies of the two carts.
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❶ GETTING STARTED 
Sketch!
To classify the collision, need the final relative speed, 
but the final velocity of cart 1 is not given.
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❷ DEVISE PLAN 
• The two-cart system is isolated, and so the 

momentum of the system does not change 
• I can use this to determine the final velocity of cart 1 

and the final relative speed of the carts. 
• By comparing the final and initial relative speeds, I 

can determine the type of collision. 
• With initial and final velocities, I can calculate the 

kinetic energies determine what fraction of the initial 
kinetic energy has been converted to internal energy.
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❸ EXECUTE PLAN (a) The initial relative speed is
|v2x,i – v1x,i| = |(+0.5 m/s) – 0| = 0.5 m/s.

To determine v1x,f, I apply conservation of momentum 
to the system. The initial momentum of the system is

(0.2 kg)(+0.5 m/s) + (0.2 kg)(0) = (0.2 kg)(+0.5 m/s)

and its final momentum is

(0.2 kg)(+0.2 m/s) + (0.2 kg)(v1x,f).
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❸ EXECUTE PLAN Conservation of momentum 
requires these two momenta to be equal:

(0.2 kg)(+0.5 m/s) = (0.2 kg)(+0.2 m/s) + (0.2 kg)(v1x,f)

(+0.5 m/s) = (+0.2 m/s) + v1x,f

v1x,f  = +0.3 m/s. 
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❸ EXECUTE PLAN The final relative speed is thus

|v2x,f – v1x,f| = |(+0.2 m/s) – (+0.3 m/s)| = 0.1 m/s,

which is different from the initial value. Thus the 
collision is inelastic. 

(I know that the collision is not totally inelastic because 
the relative speed has not been reduced to zero.) ✔
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❸ EXECUTE PLAN (b) The initial kinetic energies are
K1i = 0

so           Ki = K1i + K2i = 0.025 kg - m2/s2.

  K2i =
1
2 (0.2 kg)(0.5 m/s)2 = 0.025 kg ⋅m2/s2
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❸ EXECUTE PLAN The final kinetic energies are

so          Kf = K1f + K2f = 0.013 kg - m2/s2.
  K2f =

1
2 (0.2 kg)(0.2 m/s)2 = 0.004 kg ⋅m2/s2

  K1f =
1
2 (0.2 kg)(0.3 m/s)2 = 0.009 kg ⋅m2/s2
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❸ EXECUTE PLAN The kinetic energy of the system 
has changed by an amount 
(0.013 kg - m2/s2) – (0.025 kg - m2/s2) = -0.012 kg - m2/s2

To keep the energy of the system (the sum of its kinetic 
and internal energies) unchanged, the decrease in kinetic 
energy must be made up by an increase in internal energy. 

This tells me that the internal energy of the system 
increases by 0.012 kg - m2/s2.✔
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Example 5.3 Internal energy change (cont.)

© 2015 Pearson Education, Inc.

Section 5.3: Internal energy

❸ EXECUTE PLAN (c) Bar diagram. The final kinetic 
energy bar is about half of the initial kinetic energy bar. 
Because I don’t know the value of the initial internal 
energy, I set it to zero and make the final internal energy 
bar equal in height to the difference in the kinetic 
energy bars.✔
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Section 5.3: Internal energy

• Can extend the idea of internal 
energy to other interactions. We 
assert:
Energy can be transferred from   
one object to another or  
converted from one form to 
another, but energy cannot be 
destroyed or created. 

• No observation has ever been found 
to violate this statement known as 
the law of conservation of energy. 



Slide 5-44

Section Goal

© 2015 Pearson Education, Inc.

Section 5.4: Closed systems

• A closed system is one in which no energy is 
transferred to or from it. (Choose like we did for p.)

• The only energy changes possible in a closed system 
are transformations from one type of energy to 
another.
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• Example:
• Chemical energy stored in gasoline is converted to kinetic 

energy of a car.

© 2015 Pearson Education, Inc.

Section 5.4: Closed systems
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Quantitative Tools

© 2015 Pearson Education, Inc.

Chapter 5: Energy
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Section 5.5: Elastic collisions

Consider two objects colliding as 
shown in figure below.
• Relative velocity of cart 2 

relative to cart 1 is 

• Relative velocity of cart 2 
relative to cart 1 is 

• For elastic collisions, relative 
speeds before and after the  
collision are the same:

  

υ12 ≡


υ2 −


υ1

  

υ21 ≡


υ1 −

υ2 = −


υ12

 υ12i =υ12f (elastic collision)
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• For two objects moving along the x axis, we can write 
the previous equation as

• Considering the two colliding carts to be an isolated 
system, conservation of momentum gives

• Algebraic manipulation of the above equations will 
yield a new constant of motion

© 2015 Pearson Education, Inc.

Section 5.5: Elastic collisions

  υ2x ,i −υ1x ,i = −(υ2x ,f −υ1x ,f ) (elastic collision)

  m1υ1x ,i + m2υ2x ,i = m1υ1x ,f + m2υ2x ,f (isolated system)

  
1
2 m1υ1i

2 + 1
2 m2υ2i

2 = 1
2 m1υ1f

2 + 1
2 m2υ2f

2
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• This is why we define

• Rewrite:

K1i + K2i = K1f + K2f (elastic collision)

• Thus, elastic collision, Ki = Kf

• SI unit kg · m2/s2 – also  joule: 1 kg – m2/s2 = 1 J

© 2015 Pearson Education, Inc.

Section 5.5: Elastic collisions

  K ≡ 1
2 mυ 2

  
1
2 m1υ1i

2 + 1
2 m2υ2i

2 = 1
2 m1υ1f

2 + 1
2 m2υ2f

2
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• Example 5.5: if you use conservation of both energy 
& momentum for an elastic collision?

• Additional constraint, less unknowns, relate final 
velocities to initial velocities

• If you know masses and initial velocities, can predict 
final state! 

• “Elastic collision equations”
© 2015 Pearson Education, Inc.

Section 5.5 Elastic collisions
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• Do the equations make sense? Limiting cases

• v2x,i = 0 (strike an object at rest)

• Now consider huge m2 (like a wall) – object 1 rebounds
© 2015 Pearson Education, Inc.

Section 5.5 Elastic collisions

v1x,f =
m1 -m2

m1 +m2
v1x,i

v2x,f =
2m1

m1 +m2
v1x,i
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Example 5.6 Collision and kinetic energy
A rubber ball of inertia mb = 0.050 kg is fired along a 
track toward a stationary cart of inertia mc = 0.25 kg. 

The kinetic energy of the system after the two collide 
elastically is 2.5 J. 

(a) What is the initial velocity of the ball? 
(b) What are the final velocities of the ball and the cart?

© 2015 Pearson Education, Inc.

Section 5.5: Elastic collisions
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Example 5.6 Collision and kinetic energy 
(cont.)

❶ GETTING STARTED Organize the problem 
graphically. Choose the x axis in the direction of the 
incoming rubber ball. Only one initial velocity is given. 
I need to determine the other initial velocity and both 
final velocities.

© 2015 Pearson Education, Inc.

Section 5.5: Elastic collisions
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Example 5.6 Collision and kinetic energy 
(cont.)

❷ DEVISE PLAN Because the collision is elastic, I know 
that the kinetic energy of the system doesn’t change, 
which means that the final value (2.5 J) is the same as the 
initial value. 
Because the cart is initially at rest, all of this kinetic 
energy belongs initially to the ball. 
Once I have this information, I know the initial velocities 
of both colliding objects and I can calculate the final 
velocities.

© 2015 Pearson Education, Inc.

Section 5.5: Elastic collisions
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Example 5.6 Collision and kinetic energy 
(cont.)

❸ EXECUTE PLAN (a) K = ½mv2, we know K and m, 
so solve for v:

Because the ball is initially moving in the positive x
direction, its initial velocity is given by vb x,i = +10 m/s.✔

© 2015 Pearson Education, Inc.

Section 5.5: Elastic collisions

  
υb,i =

2Kb,i

mb

= 2(2.5 J)
0.05 kg

= 10 m/s.
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Example 5.6 Collision and kinetic energy 
(cont.)

❸ EXECUTE PLAN (b) I can now substitute the two 
initial velocities and the inertias into the elastic collision 
equations. With object 2 initial at rest, they are simpler:

This gives 
vb x,f = –6.7 m/s 
vc x,f = +3.3 m/s✔ relative v still 10 m/s

© 2015 Pearson Education, Inc.

Section 5.5: Elastic collisions
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Example 5.6 Collision and kinetic energy 
(cont.)

❹ EVALUATE RESULT It makes sense that the 
velocity of the ball is reversed by the collision because 
the inertia of the cart is so much greater than that of the 
ball. 
Now that I know both the initial and final velocities, I can 
also check to make sure that the relative speed remains 
the same, which it does, as required for an elastic 
collision.

© 2015 Pearson Education, Inc.

Section 5.5: Elastic collisions
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Section Goals
You will learn to
• Identify inelastic collisions from the relative velocity 

of the colliding objects.
• Analyze inelastic collisions mathematically using the 

law of conservation of momentum (because that’s all 
you’ve got)

© 2015 Pearson Education, Inc.

Section 5.6: Inelastic collisions
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• In totally inelastic collisions, the objects move together 
after the collision. Therefore,

v12f = 0 (totally inelastic collision)

• Most collisions fall between the two extremes of elastic 
and totally inelastic. 

© 2015 Pearson Education, Inc.

Section 5.6: Inelastic collisions
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• For these cases, it is convenient to define the quantity called 
the coefficient of restitution 

• In component form,

© 2015 Pearson Education, Inc.

Section 5.6: Inelastic collisions

  
e ≡

υ12f

υ12i

  
e = −

υ2x ,f −υ1x ,f

υ2x ,i −υ1x ,i

= −
υ12x ,f

υ12x ,i
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Section Goals
You will learn to
• Understand the law of conservation of energy for a 

closed system.
• Identify some types of internal energy changes that 

occur in physical systems.

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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• For a closed system, conservation of energy requires 
that

Ki + Eint,i = Kf + Eint,f (closed system)
• The total energy of the system is given by

E ≡ K + Eint

• Now we can rewrite the first equation as
Ei = Ef (closed system)

• Even though we cannot yet calculate Eint, the previous 
equation allows us to compute ΔEint

ΔEint = –ΔK  (closed system)

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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• As an example, consider the situation in the figure below, 
where a ball is dropped onto a mattress:
• Energy conservation requires the loss of kinetic energy to 

be equal to the gain in internal energy.

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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• Another example is shown below, that is, when a battery is 
drained rapidly, it becomes hot: 
• Energy conservation requires the loss of chemical energy 

to be equal to the gain in thermal energy.

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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Example 5.8 Making a light
A 0.20-kg steel ball is dropped into a ball of dough, 
striking the dough at a speed of 2.3 m/s and coming to 
rest inside the dough. If it were possible to turn all of 
the energy converted in this totally inelastic collision 
into light, how long could you light a desk lamp? It 
takes 25 J to light a desk lamp for 1.0 s.

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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Example 5.8 Making a light (cont.)
❶ GETTING STARTED I begin by applying the 
procedure for choosing a closed system. Although the 
problem doesn’t specify it explicitly, I’m assuming the 
dough is at rest both before and after the steel ball is 
dropped in it; it could, for example, be at rest on a 
countertop.

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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Example 5.8 Making a light (cont.)
❶ GETTING STARTED Only the steel ball has kinetic energy 
initially, and all of this energy is converted to internal energy as 
the ball comes to rest in the dough (Figure 5.20). 
I have to calculate the initial kinetic energy of the ball and 
determine how long that amount of energy could light a lamp, 
given that 25 J lights a lamp for 1.0 s.

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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Example 5.8 Making a light (cont.)
❷ DEVISE PLAN To determine the initial kinetic 
energy of the ball, I use Eq. 5.12. Then I divide this 
result by 25 J to determine how many seconds I can 
light a lamp.

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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Example 5.8 Making a light (cont.)
❸ EXECUTE PLAN The initial kinetic energy of the 
ball is

Given that a desk lamp requires 25 J per second, this 
0.53 J lights a lamp for

Great, just have to do this 50 times per second …

Section 5.7: Conservation of energy

  Kb,i =
1
2 mbυb,i

2 = 1
2 (0.20 kg)(2.3 m/s)2 = 0.53 J.

 

energy available
energy needed per second

= 0.53 J
25 J/s

= 0.021s.
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Example 5.8 Making a light (cont.)
❹ EVALUATE RESULT The length of time I obtained, 
two hundreths of a second, is not very much! 

However, a 0.20-kg steel ball moving at 2.3 m/s does not 
have much kinetic energy: I know from experience that a 
small steel ball’s ability to induce state changes—to 
crumple or deform objects, for example—is very limited.

It makes sense that one can’t light a desk lamp very long.

© 2015 Pearson Education, Inc.

Section 5.7: Conservation of energy
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Checkpoint 5.12

A gallon of gasoline contains approximately 1.2 × 108 J 
of energy. If all of this energy were converted to kinetic energy in 
a 1200-kg car, how fast would the car go?

With the given K and m, v ~ 4.5 x 102 m/s

5.12
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Section Goals
You will learn to
• Recognize that explosive separations involve a  

process in which internal energy is converted into 
kinetic energy.

• Use the law of conservation of momentum to 
calculate the relative final velocity of the explosion 
fragments.

© 2015 Pearson Education, Inc.

Section 5.8: Explosive separations
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Section 5.8: Explosive separations

• Is it possible to have a 
process in which kinetic 
energy is gained at the 
expense of internal energy?
• Yes, in any type of 

explosive separation, 
where the object breaks 
apart. 

• Firing a cannon is one 
such example, as seen in 
the figure.
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• The figure below shows an explosive separation involving two carts. 
• Because v1x,i = v2x,i = 0, using conservation of momentum we 

can write 
0 = m1v1x,f + m2v2x,f

• Applying energy conservation we get

© 2015 Pearson Education, Inc.

Section 5.8: Explosive separations

  ΔK + ΔEint =
1
2 m1υ1f

2 + 1
2 m2υ2f

2 + ΔEint = 0
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Section 5.8: Explosive separations

Example 5.9 Spring energy
A 0.25-kg cart is held at rest 
against a compressed spring as in 
Figure 5.8a and then released. 
The cart’s speed after it separates 
from the spring is 2.5 m/s. The 
spring is then compressed by the 
same amount between a 0.25-kg 
cart and a 0.50-kg cart, as shown 
in Figure 5.22a, and the carts are 
released from rest. What are the 
carts’ speeds after separating 
from the spring?
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Example 5.9 Spring energy (cont.)
❶ GETTING STARTED The key point in this problem 
is the identical compression of the spring in the two 
cases: The initial state of the spring is therefore the same 
before both releases. Because the spring ends in the same 
uncompressed state in both cases, the change in its 
internal energy must be the same in both cases. In the 
first case, all of this energy is transferred to the 0.25-kg 
cart. In the second case, the same amount of energy is 
distributed between the two carts.

© 2015 Pearson Education, Inc.

Section 5.8: Explosive separations
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Example 5.9 Spring energy (cont.)
❷ DEVISE PLAN To calculate the kinetic energy of 
the single cart in the first release, I use Eq. 5.12. This 
gives me the amount of energy stored in the compressed 
spring. The final velocities of the two carts in the 
second case are then given by Eqs. 5.28 and 5.29.

© 2015 Pearson Education, Inc.

Section 5.8: Explosive separations
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Example 5.9 Spring energy (cont.)
❸ EXECUTE PLAN From Eq. 5.12, I get

and so the change in the spring’s internal energy is ΔEint = 
–0.78 J. Next I rewrite Eq. 5.28 as v1x,f = – (m2/m1) v2x,f . 
Substituting this result in Eq. 5.29, I get

© 2015 Pearson Education, Inc.

Section 5.8: Explosive separations

  K = 1
2 mυ 2 = 1

2 (0.25 kg)(2.5 m/s)2 = 0.78 J

2
2 221 1

1 2 ,f 2 2 ,f int2 2
1

.x x
mm m E
m

υ υ
⎛ ⎞

+ = −Δ⎜ ⎟
⎝ ⎠
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Example 5.9 Spring energy (cont.)
❸ EXECUTE PLAN Solving for the final velocity of 
cart 2 gives

Substituting this result into my rewritten Eq. 5.28,
v1x,f = –(m2/m1)v2x,f, I get v1x,f = –2.0 m/s.✔

© 2015 Pearson Education, Inc.

Section 5.8: Explosive separations

  

υ2xf =
−2m1ΔEint

m2(m1 + m2 )

υ2xf =
−2(0.25 kg)(−0.78 J)

(0.50 kg)(0.25 kg + 0.50 kg)
= 1.0 m/s.✔
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Example 5.9 Spring energy (cont.)
❹ EVALUATE RESULT The carts move in opposite 
directions, as expected. I also note that cart 1 moves at 
twice the speed of cart 2, as it should to keep the final 
momentum of the system zero. Finally, because my 
assignment of m1 and m2 is arbitrary, I verify that I get the 
same result when I substitute m1 = 0.50 kg and m2 = 0.25 
kg. (You may want to check this yourself. When you 
reverse the inertias, why does the velocity of cart 1 
reverse to positive and the velocity of cart 2 reverse to 
negative?)

© 2015 Pearson Education, Inc.

Section 5.8: Explosive separations
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Checkpoint 5.13

Does each cart in Example 5.9 get half of the spring’s 
energy? Why or why not?

5.13
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Concepts: Kinetic energy
• The kinetic energy of an object is the energy 

associated with its motion.
• Kinetic energy is a positive scalar quantity and is 

independent of the direction of motion.

© 2015 Pearson Education, Inc.

Chapter 5: Summary
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Quantitative Tools: Kinetic energy
• The kinetic energy K of an object of inertia m

moving at speed υ is

• The SI unit of kinetic energy is the joule (J):
1 J = 1 kg · m2/s2.

© 2015 Pearson Education, Inc.

Chapter 5: Summary

  K = 1
2 mυ 2.
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Concepts: Relative velocity, states, and 
internal energy
• In a collision between two objects, the velocity of one object 

relative to the velocity of the other object is the relative 
velocity The magnitude of the relative velocity is the 
relative speed υ12.

• The state of an object is its condition as specified by some 
complete set of physical parameters. Energy associated with 
the object’s state but not with its motion is called the internal 
energy of the object.

• We can consider a system of two colliding objects to be 
isolated during the collision. Therefore the momentum of the 
system remains constant during all the collisions we study.

© 2015 Pearson Education, Inc.

Chapter 5: Summary

  

υ12.
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Quantitative Tools: Relative velocity, states, 
and internal energy
• The relative velocity of object 2 relative to object 1 is

• The relative speed υ12 of object 2 relative to object 1 is the 
magnitude of

• Because momentum is a conserved quantity, the momentum of 
a system remains constant during a collision:

px,i = px,f.
© 2015 Pearson Education, Inc.

Chapter 5: Summary

  

υ12

  

υ12 ≡


υ2 −


υ1.

  

υ12:

  υ12 =

υ2 −


υ1 .
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Concepts: Types of collisions
• The coefficient of restitution e for a collision is a 

positive, unitless quantity that tells how much of the 
initial relative speed is restored after the collision.

• For an elastic collision, the relative speed is the same 
before and after the collision, and the coefficient of 
restitution is equal to 1. The collision is reversible, 
and the kinetic energy of the system made up of the 
colliding objects is constant.

© 2015 Pearson Education, Inc.

Chapter 5: Summary
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Concepts: Types of collisions
• For an inelastic collision, the relative speed after the collision 

is less than it was before the collision. The coefficient of 
restitution is between 0 and 1, and the collision is irreversible. 
The kinetic energy of the objects changes during the collision, 
but the energy of the system does not change. If the objects 
stick together, the final relative speed is zero; the collision is 
totally inelastic, and the coefficient of restitution is 0. 

• For an explosive separation, kinetic energy is gained during 
the collision and the coefficient of restitution is greater than 1.

© 2015 Pearson Education, Inc.

Chapter 5: Summary
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Quantitative Tools: Types of collisions
• The coefficient of restitution e is

• For an elastic collision,
υ12i = υ12f

Ki = Kf

e = 1.
• For an inelastic collision,

υ12f < υ12i

Kf < Ki

0 < e < 1.
© 2015 Pearson Education, Inc.

Chapter 5: Summary

  
e =

υ12f

υ12i

= –
υ2x ,f −υ1x ,f

υ2x ,i −υ1x ,i

.
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Quantitative Tools: Types of collisions
• For a totally inelastic collision,

υ12f = 0
e = 0.

• For an explosive separation,
υ12f > υ12i

Kf > Ki

e > 1.

© 2015 Pearson Education, Inc.

Chapter 5: Summary
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Concepts: Conservation of energy
• The energy of any system is the sum of the kinetic energies 

and internal energies of all the objects that make up the 
system.

• The law of conservation of energy states that energy can be 
transferred from one object to another or converted from one 
form to another, but it cannot be destroyed or created.

• A closed system is one in which no energy is transferred in or 
out. The energy of such a system remains constant.

© 2015 Pearson Education, Inc.

Chapter 5: Summary
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Quantitative Tools: Conservation of energy
• The energy of a system is

E = K + Eint.
• The law of conversation of energy requires the energy 

of a closed system to be constant:
Ei = Ef.

© 2015 Pearson Education, Inc.

Chapter 5: Summary


