PH105 GENERAL PHYSICS I

PROF. LECLAIR

PH105: GENERAL PHYSICS I

- Dr. Patrick LeClair; <u>leclair.homework@gmail.com</u> offices: 2012 Bevill, 323 Gallalee cell: 857-891-4267 (txt preferred, call if urgent)
- office hours: (email/txt ahead ideally)
 12-1 Gallalee, 4-5 Bevill
 other times by appointment

GRADUATE ASSISTANTS

- meet them on Wednesday ...
- they will mostly run the labs, and will have office hours
- Abhishek Srivastava
- Ezhil Manoharan

OFFICIAL THINGS, CONT.

• Lecture:

I-2:45 every day short break in the middle

- will go over problems, but only so many
- a big part of learning is solving problems on your own ...
- some notes provided, will follow the book
- no attendance policy for lectures (but there may be quizzes)
- <u>Syllabus</u>

TOPICS

- I. Distance, velocity, & acceleration
- 2. Newton's laws of motion
- 3. Energy
- 4. Momentum & collisions
- 5. Rotational motion
- 6. Gravitation
- 7. Solids & fluids
- 8. Thermal physics
- 9. Sound & oscillations

GRADING

- 3 exams (during lab period) + final (exam period)
- homework: a few daily problems turn in only one
- lab: turn in one report per week. more detail tomorrow

•	quizzes:	during	lab period	(mostly)
---	----------	--------	------------	----------

Homework	15%
Labs	15%
Quizzes	15%
Exam I	15%
Exam II	15%
Exam III	15%
Final	10%

LAB EXPERIMENTS

Lab session: MWR 8-10:50, Gallalee 203

some days we may start later

also time for quizzes, HW help, discussion

usually related to current lecture material

work in groups of 3 of your choosing

write I lab report per week

LAB REPORTS

- we do 2-3 experiments per week
- as a group, pick I to write a formal report on
 - raw data from other 2 labs as an appendix
- <u>template</u> for report will be provided
- due each Monday

HOMEWORK

- just paper & pencil, no online homework
- collaboration is OK
- assigned every day, turn one specific problem by end of next lecture
- problems not turned in are not graded, but may show up later ...
- use template format (next slide; can be handwritten)

Ι.

Find / Given: Sketch:

Relevant equations:

Symbolic solution:

Numeric solution:	Double Check		
	Dimensions		Order-of-magnitude

PROBLEM SOLVING

- Conceptualize
 - Think and understand
 - Make a drawing
 - Known and unknowns
 - Estimate
- Categorize
 - Simplify
 - Substitution or analysis?
 - Classify

- Analyze
 - List relevant formulae
 - Apply mathematical principles to calculate the result
- Finalize
 - Check units
 - Examine extremes
 - Compare to other results
 - What have you learned?

SCHEDULE

May

T26 Intro / 1D motion W27 1D motion / 2D motion | uncertainty analysis; diagnostic exam R28 2D motion | 1D motion, free-fall F29 Motion along arbitrary paths / misc.

June

M 1 Force & motion 1 | 2nd law experiment T 2 Force & motion 1/2W 3 Force & motion 2 | friction lab R 4 KE and work | Exam 1 F 5 KE and work / PE and CoE M 8 PE and CoE | momentum T 9 Center of mass & momentum W10 Rotation / rolling, torque, angular momentum | TBD R11 Rolling, torque, angular momentum / equilibrium & elasticity | Exam 2 F12 Gravitation M15 Oscillations | Simple Harmonic Motion T16 Wayes 1 W17 Waves 2 | standing waves R18 Temperature, heat, first law | Exam 3 F19 Fluids M22 Kinetic theory | calorimetry T23 2nd law / END W24 Final exam / 12-1:45pm

• Feynman lectures online (useful supplement)

primary topic	secondary topic	tertiary / activity	in lab	HRW	Feynman
26-May syllabus, overview	motion	modeling		2.1-6	1.2, 1.11, 1.22
27-May motion in 1D	motion in 2D	uncertainty	safety, uncert	2.6-10, 4.1-5	1.5, 1.8
28-May motion in 2D	projectiles		1D motion	4.5-7	
29-May arbitrary motion	circular motion			4.8-9, notes	
1-Jun Newton's laws			2nd law experiment	5.1-8	1.9, 1.10
2-Jun Newton's laws	free body diagrams			5.9, 6.1-3	1.12
3-Jun Newton's laws	Friction, drag	motion on curved paths	friction lab	6.4-5, notes	
4-Jun kinetic energy	work		EXAM 1	7.1-6	
5-Jun kinetic energy & work	potential energy	conservation of energy		7.6-9, 8.1-5	1.4, 1.13, 1.14
8-Jun potential energy	conservation of energy	momentum	momentum	8.6-8, 9.1-4	1.52
9-Jun center of mass	momentum			9.5-11	1.10
10-Jun rotation	rolling	torque & angular momentum	TBD	10.all	1.18, 1.19
11-Jun torque	angular momentum		EXAM 2	11.all	1.20
12-Jun gravitation				13.all	1.7
15-Jun oscillations	simple harmonic motion		simple harmonic motion	15.1-7	1.21, 1.23, 1.24
16-Jun waves	sound			16.all	1.47, 1.48
17-Jun waves	standing waves	resonance	standing waves	17.all, 15.8-9	1.50, 1.51
18-Jun temperature	heat	1st law of thermo	EXAM 3	18.all	2.40, 2.41
19-Jun fluids				14.all	
22-Jun kinetic theory	ideal gas law	Boltzman distribution	calorimetry	19.all	1.39, 1.40, 1.41
23-Jun 2nd law of thermo 24-Jun FINAL EXAM 12-1:45				20.all	1.44, 1.45

INTERTUBES

- <u>http://ph105.blogspot.com/</u> RSS feed, updated often
- grades will be posted, occasionally, on blackboard
- you can always ask me what your average is to check
- you should get all your work back

STUFFYOU NEED

- textbook
- writing implements
- basic calculator (trig/log is enough)

SHOWING UP

- we hope you will find some utility in the class
- homework/labs/exams may rely on stuff I say in class
- missing an exam is seriously bad.

acceptable reason ... makeup or weight final

OTHER

- the pace is brutal. can't be helped
- algebra, trigonometry, calculus I fluency assumed
- glance through Ch. I to make sure it is mostly review
- Read most of Ch. 2 & lab | for tomorrow
- you have problems due tomorrow (can ask in morning lab ...)
- lecture ~ discussion of material; relies on you having read!

TODAY & NEXTTIME:

MOTION IN ID

Our friend the vector

- we will be doing terrible things with them
- vector = quantity requiring an arrow to represent
 - coordinate-free description
 - described by basis (unit) vectors of a coordinate system
- proper vectors are unchanged by coordinate transformations ...

Adding & subtracting vectors

- commutative, A+B = B+A
- associative, A + (B+C) = (A+B) + C
- subtracting = add negative (reverse direction)
- add head-tail geometrically (law of cosines)
- add by component (using unit vectors)

Geometrically:

$$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| - 2|\vec{a}||\vec{b}|\cos\theta$$

By components: first choose a basis/coordinate system

$$\vec{a} = a_x \hat{i} + a_y \hat{j} \qquad \vec{b} = b_x \hat{i} + b_y \hat{j}$$
$$\vec{a} + \vec{b} = (a_x + b_x) \hat{i} + (a_y + b_y) \hat{j}$$

magnitude identical to geometric approach

Scalar multiplication

- Duh, the vector gets longer.
- By component:

$$c\vec{a} = c\left(a_x\,\hat{i} + a_y\,\hat{j}\right) = ca_x\,\hat{i} + ca_y\,\hat{j}$$

- Geometrically: the arrow gets *c* times longer
- Distributive.

$$c\left(\vec{A}+\vec{B}\right) = c\vec{A}+c\vec{B}$$

Scalar ("dot") product

- product of vector A and the projection of B onto A
- scalar product of two vectors gives a *scalar*

$$\vec{A} \cdot \vec{B} = a_x b_x + a_y b_y = |\vec{A}| |\vec{B}| \cos \theta_{AB}$$

• commutes, distributes

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A} \qquad \vec{A} \cdot \left(\vec{B} + \vec{C}\right) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

• two vectors are perpendicular if and only if their scalar product is zero

A∣ cosθ

vector ("cross") product

• product of vector A and B, gives 3rd vector perpendicular to A-B plane

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta_{AB}$$
$$\vec{A} \times \vec{B} = \vec{A} \vec{B} \sin \theta_{AB} \hat{n}$$

• Distributes, does **NOT** commute

$$\vec{A} \times \left(\vec{B} \times \vec{C}
ight) = \left(\vec{A} \times \vec{B}
ight) + \left(\vec{A} \times \vec{C}
ight)$$

 $\vec{A} \times \vec{B} = -\left(\vec{B} \times \vec{A}
ight)$

vector ("cross") product

• 'perpendicular' direction not unique! choice of 'handedness' or chirality. we pick RH.

cross products are not the same as their mirror images

$$\hat{\imath} \times \hat{\jmath} = \hat{k} - \hat{\imath} = \hat{\imath} \times \hat{\imath}$$

 $\hat{\jmath} \times \hat{k} = \hat{\imath}$ $-\hat{\imath} = \hat{\jmath} \times \hat{\iota}$ $\hat{k} \times \hat{\imath} = \hat{\jmath}$ $-\hat{\iota} = \hat{\imath} \times \hat{\imath}$

some things that may prove handy later ...

formula	relationship
$ec{\mathbf{a}}\cdotec{\mathbf{b}}=ec{\mathbf{b}}\cdotec{\mathbf{a}}$	commutative
$\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} + \vec{\mathbf{c}}) = \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{a}} \cdot \vec{\mathbf{c}}$	distributive
$\vec{\mathbf{a}} \cdot (r\vec{\mathbf{b}} + \vec{\mathbf{c}}) = r(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) + r(\vec{\mathbf{a}} \cdot \vec{\mathbf{c}})$	bilinear
$(c_1 \mathbf{\vec{a}}) \cdot (c_2 \mathbf{\vec{b}}) = (c_1 c_2) (\mathbf{\vec{a}} \cdot \mathbf{\vec{b}})$	multiplication by scalars
if $\vec{\mathbf{a}} \perp \vec{\mathbf{b}}$, then $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$	orthogonality

$ec{\mathbf{a}} imes ec{\mathbf{b}} = -ec{\mathbf{b}} imes ec{\mathbf{a}}$
$ec{\mathbf{a}} imes \left(ec{\mathbf{b}} + ec{\mathbf{c}} ight) = \left(ec{\mathbf{a}} imes ec{\mathbf{b}} ight) + \left(ec{\mathbf{a}} imes ec{\mathbf{c}} ight)$
$(r\vec{\mathbf{a}}) \times \vec{\mathbf{b}} = \vec{\mathbf{a}} \times (r\vec{\mathbf{b}}) = r(\vec{\mathbf{a}} \times \vec{\mathbf{b}})$
$\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + \vec{\mathbf{b}} \times (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) + \vec{\mathbf{c}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) = 0$
$\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \vec{\mathbf{b}} (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) - \vec{\mathbf{c}} (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$
$(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = -\vec{\mathbf{c}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) = -\vec{\mathbf{a}}(\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}) + \vec{\mathbf{b}}(\vec{\mathbf{a}} \cdot \vec{\mathbf{c}})$
$\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \vec{\mathbf{b}} \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) = \vec{\mathbf{c}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{b}})$
$ ec{\mathbf{a}} imesec{\mathbf{b}} ^2+ ec{\mathbf{a}}\cdotec{\mathbf{b}} ^2= ec{\mathbf{a}} ^2 ec{\mathbf{b}} ^2$
if $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{a}} \times \vec{\mathbf{c}}$ then $\vec{\mathbf{b}} = \vec{\mathbf{c}}$ iff $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{a}} \cdot \vec{\mathbf{c}}$

relationship

anticommutative

distributive over addition

compatible with scalar multiplication not associative; obeys Jacobi identity triple vector product expansion triple vector product expansion triple scalar product expansion[†] relation between cross and dot product lack of cancellation

vectors are how we define positions & directions

infinitesimal displacements along a path

$$(x, y, z) \to (x + dx, y + dy, z + dz)$$

described by a infinitesimal vector

$$d\vec{l} = dx\,\hat{x} + dy\,\hat{y} + dz\,\hat{z}$$

build up a whole path by integrating all such dl's

depends on coordinate system $d\vec{l} = dr \,\hat{r} + r \sin \theta \, d\theta \,\hat{\theta} + r \, dr \, d\theta \,\hat{\varphi}$ (spherical)

