PHIO5

GENERAL PHYSICS I
 PROF. LECLAIR

PHI05: GENERAL PHYSICS

- Dr. Patrick LeClair; leclair.homework@gmail.com
offices: 2012 Bevill, 323 Gallalee cell: 857-89|-4267 (txt preferred, call if urgent)
- office hours: (email/txt ahead ideally)
|2-| Gallalee, 4-5 Bevill
other times by appointment

GRADUATE ASSISTANTS

- meet them on Wednesday ...
- they will mostly run the labs, and will have office hours
- Abhishek Srivastava
- Ezhil Manoharan

OFFICIALTHINGS, CONT.

- Lecture:
I-2:45 every day
short break in the middle
- will go over problems, but only so many
- a big part of learning is solving problems on your own ...
- some notes provided, will follow the book
- no attendance policy for lectures (but there may be quizzes)
- Syllabus

TOPICS

I. Distance, velocity, \& acceleration
2. Newton's laws of motion
3. Energy
4. Momentum \& collisions
5. Rotational motion
6. Gravitation
7. Solids \& fluids
8. Thermal physics
9. Sound \& oscillations

GRADING

- 3 exams (during lab period) + final (exam period)
- homework: a few daily problems - turn in only one
- lab: turn in one report per week. more detail tomorrow
- quizzes: during lab period (mostly)

Homework	15%
Labs	15%
Quizzes	15%
Exam I	15%
Exam II	15%
Exam III	15%
Final	10%

LAB EXPERIMENTS

Lab session: MWR 8- I0:50, Gallalee 203
some days we may start later also time for quizzes, HW help, discussion
usually related to current lecture material
work in groups of 3 of your choosing
write I lab report per week

LAB REPORTS

- we do 2-3 experiments per week
- as a group, pick I to write a formal report on
- raw data from other 2 labs as an appendix
- template for report will be provided
- due each Monday

HOMEWORK

- just paper \& pencil, no online homework
- collaboration is OK
- assigned every day, turn one specific problem by end of next lecture
- problems not turned in are not graded, but may show up later ...
- use template format (next slide; can be handwritten)
I.

Find / Given:
 Sketch:

PROBLEM SOLVING

- Conceptualize
- Think and understand
- Make a drawing
- Known and unknowns
- Estimate
- Categorize
- Simplify
- Substitution or analysis?
- Classify
- Analyze
- List relevant formulae
- Apply mathematical principles to calculate the result
- Finalize
- Check units
- Examine extremes
- Compare to other results
- What have you learned?

May

T26 Intro / 1D motion
W27 1D motion / 2D motion I uncertainty analysis; diagnostic exam
R28 2D motion I 1D motion, free-fall
F29 Motion along arbitrary paths / misc.

June

M 1 Force \& motion 1 I 2nd law experiment
T 2 Force \& motion 1/2
W 3 Force \& motion 21 friction lab
R 4 KE and work I Exam 1
F 5 KE and work / PE and CoE
M 8 PE and CoEI momentum
T 9 Center of mass \& momentum
W10 Rotation / rolling, torque, angular momentum I TBD
R11 Rolling, torque, angular momentum / equilibrium \& elasticity I Exam 2
F12 Gravitation
M15 Oscillations I Simple Harmonic Motion
T16 Waves 1
W17 Waves 21 standing waves
R18 Temperature, heat, first law I Exam 3
F19 Fluids
M22 Kinetic theory I calorimetry
T23 2nd law / END
W24 Final exam / 12-1:45pm

- Feynman lectures online (useful supplement)

primary topic	secondary topic	tertiary / activity	in lab	HRW	Feynman
26-May syllabus, overview	motion	modeling		2.1-6	1.2, 1.11, 1.22
27-May motion in 1D	motion in 2D	uncertainty	safety, uncert	2.6-10, 4.1-5	1.5, 1.8
28-May motion in 2D	projectiles		1D motion	4.5-7	
29-May arbitrary motion	circular motion			4.8-9, notes	
1-Jun Newton's laws			2nd law experiment	5.1-8	1.9, 1.10
2-Jun Newton's laws	free body diagrams			5.9, 6.1-3	1.12
3-Jun Newton's laws	Friction, drag	motion on curved paths	friction lab	6.4-5, notes	
4-Jun kinetic energy	work		EXAM 1	7.1-6	
5-Jun kinetic energy \& work	potential energy	conservation of energy		7.6-9, 8.1-5	1.4, 1.13, 1.14
8-Jun potential energy	conservation of energy	momentum	momentum	8.6-8, 9.1-4	1.52
9 -Jun center of mass	momentum			9.5-11	1.10
10-Jun rotation	rolling	torque \& angular momentum	TBD	10.all	1.18, 1.19
11-Jun torque	angular momentum		EXAM 2	11.all	1.20
12-Jun gravitation				13.all	1.7
15-Jun oscillations	simple harmonic motion		simple harmonic motion	15.1-7	1.21, 1.23, 1.24
16-Jun waves	sound			16.all	1.47, 1.48
17-Jun waves	standing waves	resonance	standing waves	17.all, 15.8-9	1.50, 1.51
18-Jun temperature	heat	1st law of thermo	EXAM 3	18.all	2.40, 2.41
19-Jun fluids				14.all	
22-Jun kinetic theory	ideal gas law	Boltzman distribution	calorimetry	19.all	1.39, 1.40, 1.41
23-Jun 2nd law of thermo				20.all	1.44, 1.45

INTERTUBES

- http://ph 105.blogspot.com/ RSS feed, updated often
- grades will be posted, occasionally, on blackboard
- you can always ask me what your average is to check
- you should get all your work back

STUFFYOU NEED

- textbook
- writing implements
- basic calculator (trig/log is enough)

SH~ロ

- we hope you will find some utility in the class
- homework/labs/exams may rely on stuff I say in class
- missing an exam is seriously bad.
acceptable reason ... makeup or weight final

- the pace is brutal. can't be helped
- algebra, trigonometry, calculus I fluency assumed
- glance through Ch. I to make sure it is mostly review
- Read most of Ch. 2 \& lab I for tomorrow
- you have problems due tomorrow (can ask in morning lab ...)
- lecture ~ discussion of material; relies on you having read!

TODAY \& NEXTTIME:

MOTION IN ID

Our friend the vector

- we will be doing terrible things with them
- vector = quantity requiring an arrow to represent
- coordinate-free description
- described by basis (unit) vectors of a coordinate system
- proper vectors are unchanged by coordinate transformations ...

Adding \& subtracting vectors

- commutative, $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
- associative, $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
- subtracting $=$ add negative (reverse direction)
- add head-tail geometrically (law of cosines)
- add by component (using unit vectors)

Geometrically:

$$
|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|-2|\vec{a}||\vec{b}| \cos \theta
$$

By components: first choose a basis/coordinate system

$$
\begin{aligned}
& \vec{a}=a_{x} \hat{i}+a_{y} \hat{j} \quad \vec{b}=b_{x} \hat{i}+b_{y} \hat{j} \\
& \vec{a}+\vec{b}=\left(a_{x}+b_{x}\right) \hat{i}+\left(a_{y}+b_{y}\right) \hat{j}
\end{aligned}
$$

magnitude identical to geometric approach

Scalar multiplication

- Duh, the vector gets longer.
- By component:

$$
c \vec{a}=c\left(a_{x} \hat{i}+a_{y} \hat{\mathfrak{j}}\right)=c a_{x} \hat{\mathfrak{i}}+c a_{y} \hat{\mathfrak{j}}
$$

- Geometrically: the arrow gets c times longer
- Distributive.

$$
c(\vec{A}+\vec{B})=c \vec{A}+c \vec{B}
$$

Scalar ("dot") product

- product of vector A and the projection of B onto A
- scalar product of two vectors gives a scalar

$$
\vec{A} \cdot \vec{B}=a_{x} b_{x}+a_{y} b_{y}=|\vec{A}||\vec{B}| \cos \theta_{A B}
$$

- commutes, distributes

$$
\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A} \quad \vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}
$$

- two vectors are perpendicular if and only if their scalar product is zero

vector ("cross") product

- product of vector A and B , gives 3 rd vector perpendicular to A-B plane
$|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta_{A B}$
$\vec{A} \times \vec{B}=\vec{A} \vec{B} \sin \theta_{A B} \hat{n}$

- Distributes, does NOT commute
$\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \times \vec{B})+(\vec{A} \times \vec{C})$
$\vec{A} \times \vec{B}=-(\vec{B} \times \vec{A})$

vector ("cross") product

- 'perpendicular' direction not unique!
choice of 'handedness' or chirality. we pick RH.
(a)

RH

cross products are not

 the same as their mirror images$$
\begin{aligned}
& \hat{\mathbf{\imath}} \times \hat{\boldsymbol{\jmath}}=\hat{\mathbf{k}} \quad-\hat{\boldsymbol{\lambda}}=\hat{\mathrm{\imath}} \times \hat{\mathbf{s}} \\
& \hat{\boldsymbol{\jmath}} \times \hat{\mathbf{k}}=\hat{\boldsymbol{\imath}} \quad-\hat{\mathbf{s}}=\hat{\mathbf{\lambda}} \times \hat{\mathbf{c}} \\
& \hat{\mathbf{k}} \times \hat{\imath}=\hat{\jmath} \quad-\hat{\imath}=\hat{\jmath} \times \hat{\boldsymbol{\imath}}
\end{aligned}
$$

some things that may prove handy later ...

formula	relationship
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}$	commutative
$\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}$	distributive
$\overrightarrow{\mathbf{a}} \cdot(r \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=r(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})+r(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})$	bilinear
$\left(c_{1} \overrightarrow{\mathbf{a}}\right) \cdot\left(c_{2} \overrightarrow{\mathbf{b}}\right)=\left(c_{1} c_{2}\right)(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$	multiplication by scalars
if $\overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}$, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$	orthogonality

formula	relationship
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$	anticommutative
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})$	distributive over addition
$(r \overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times(r \overrightarrow{\mathbf{b}})=r(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$	compatible with scalar multiplication
$\mathbf{a} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=0$	not associative; obeys Jacobi identity
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})-\overrightarrow{\mathbf{c}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$	triple vector product expansion
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=-\overrightarrow{\mathbf{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{a}}(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})$	triple vector product expansion
$\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$	triple scalar product expansion
$\|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\|^{2}+\|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}\|^{2}=\|\overrightarrow{\mathbf{a}}\|^{2}\|\overrightarrow{\mathbf{b}}\|^{2}$	relation between cross and dot product
if $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$ then $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}$ iff $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}$	lack of cancellation

vectors are how we define positions \& directions

$\vec{r}=x \hat{i}+y \hat{j}+z \hat{z}$
from origin to P
$|\vec{r}|^{2}=x^{2}+y^{2}+z^{2}=\vec{r} \cdot \vec{r} \quad$ distance
$\hat{\mathrm{r}}=\frac{\overrightarrow{\mathrm{r}}}{|\overrightarrow{\mathrm{r}}|}$
direction - unit vector
infinitesimal displacements along a path
$(x, y, z) \rightarrow(x+d x, y+d y, z+d z)$
described by a infinitesimal vector

$$
P^{\prime}(x+d x, y+d y, z+d z)
$$

$d \vec{l}=d x \hat{x}+d y \hat{y}+d z \hat{z}$
build up a whole path by integrating all such dl's

depends on coordinate system
$d \vec{l}=d r \hat{r}+r \sin \theta d \theta \hat{\theta}+r d r d \theta \hat{\varphi} \quad$ (spherical)

cartesian x,y,z

cylindrical
R, φ, z
$\mathbf{s}, \varphi, \mathbf{z}$

spherical
r, θ, φ

