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PH105: GENERAL PHYSICS 1

• Dr. Patrick LeClair ; leclair.homework@gmail.com
offices: 2012 Bevill, 323 Gallalee
cell: 857-891-4267 (txt preferred, call if urgent)

• office hours: (email/txt ahead ideally)
12-1 Gallalee, 4-5 Bevill 
other times by appointment

mailto:pleclair@ua.edu


GRADUATE ASSISTANTS

• meet them on Wednesday ...
• they will mostly run the labs, and will have office hours

• Abhishek Srivastava
• Ezhil Manoharan



OFFICIAL THINGS, CONT.
• Lecture:

1-2:45 every day
short break in the middle

• will go over problems, but only so many
• a big part of learning is solving problems on your own ...
• some notes provided, will follow the book
• no attendance policy for lectures (but there may be quizzes)

• Syllabus

http://syllabi.ua.edu/osm/viewsyllabus/201530/30244/85a5007be82db943d0e06b66f5bd3044b67c6fbc


TOPICS
1. Distance, velocity, & acceleration
2. Newton’s laws of motion
3. Energy
4. Momentum & collisions
5. Rotational motion
6. Gravitation
7. Solids & fluids
8. Thermal physics
9. Sound & oscillations



GRADING
• 3 exams (during lab period) + final (exam period)
• homework: a few daily problems - turn in only one
• lab: turn in one report per week. more detail tomorrow
• quizzes: during lab period (mostly)

Homework 15%

Labs 15%

Quizzes 15%

Exam 1 15%

Exam II 15%

Exam III 15%

Final 10%



LAB EXPERIMENTS
Lab session: MWR 8-10:50, Gallalee 203

some days we may start later

also time for quizzes, HW help, discussion

usually related to current lecture material

work in groups of 3 of your choosing

write 1 lab report per week



LAB REPORTS

• we do 2-3 experiments per week

• as a group, pick 1 to write a formal report on

• raw data from other 2 labs as an appendix

• template for report will be provided

• due each Monday

http://faculty.mint.ua.edu/~pleclair/ph105/Labs/report_template.pdf


HOMEWORK
• just paper & pencil, no online homework 

• collaboration is OK

• assigned every day, turn one specific problem by end of next lecture

• problems not turned in are not graded, but may show up later …

• use template format (next slide; can be handwritten)



Name & ID

1.

Find / Given: Sketch:

Relevant equations: Symbolic solution:

Numeric solution: Double Check

Dimensions Order-of-magnitude



PROBLEM SOLVING

• Conceptualize 
– Think and understand 
– Make a drawing 
– Known and unknowns 
– Estimate 

• Categorize 
– Simplify 
– Substitution or analysis? 
– Classify

• Analyze 
– List relevant formulae 
– Apply mathematical 

principles to calculate 
the result 

• Finalize 
– Check units 
– Examine extremes 
– Compare to other results 
– What have you learned? 



SCHEDULE
May
T26 Intro / 1D motion 
W27 1D motion / 2D motion | uncertainty analysis; diagnostic exam
R28 2D motion | 1D motion, free-fall
F29 Motion along arbitrary paths / misc.

June
M 1 Force & motion 1 | 2nd law experiment
T 2 Force & motion 1/2
W 3 Force & motion 2 | friction lab
R 4 KE and work | Exam 1
F 5 KE and work / PE and CoE
M 8 PE and CoE | momentum
T 9 Center of mass & momentum
W10 Rotation / rolling, torque, angular momentum | TBD
R11 Rolling, torque, angular momentum / equilibrium & elasticity | Exam 2
F12 Gravitation
M15 Oscillations | Simple Harmonic Motion
T16 Waves 1
W17 Waves 2 | standing waves
R18 Temperature, heat, first law | Exam 3
F19 Fluids
M22 Kinetic theory | calorimetry
T23 2nd law / END
W24 Final exam / 12-1:45pm



primary'topic secondary'topic tertiary'/'activity in'lab HRW Feynman

26#May syllabus,,overview motion modeling 2.1#6 1.2,,1.11,,1.22
27#May motion,in,1D motion,in,2D uncertainty safety,,uncert 2.6#10,,4.1#5 1.5,,1.8
28#May motion,in,2D projectiles 1D,motion 4.5#7
29#May arbitrary,motion circular,motion 4.8#9,,notes

1#Jun Newton's,laws 2nd,law,experiment 5.1#8 1.9,,1.10
2#Jun Newton's,laws free,body,diagrams 5.9,,6.1#3 1.12
3#Jun Newton's,laws Friction,,drag motion,on,curved,paths friction,lab 6.4#5,,notes
4#Jun kinetic,energy work EXAM'1 7.1#6
5#Jun kinetic,energy,&,work potential,energy conservation,of,energy 7.6#9,,8.1#5 1.4,,1.13,,1.14

8#Jun potential,energy conservation,of,energy momentum momentum 8.6#8,,9.1#4 1.52
9#Jun center,of,mass momentum 9.5#11 1.10

10#Jun rotation rolling torque,&,angular,momentum TBD 10.all 1.18,,1.19
11#Jun torque angular,momentum EXAM'2 11.all 1.20
12#Jun gravitation 13.all 1.7

15#Jun oscillations simple,harmonic,motion simple,harmonic,motion 15.1#7, 1.21,,1.23,,1.24
16#Jun waves sound 16.all 1.47,,1.48
17#Jun waves standing,waves resonance standing,waves 17.all,,15.8#9 1.50,,1.51
18#Jun temperature heat, 1st,law,of,thermo EXAM'3 18.all 2.40,,2.41
19#Jun fluids 14.all

22#Jun kinetic,theory ideal,gas,law Boltzman,distribution calorimetry 19.all 1.39,,1.40,,1.41
23#Jun 2nd,law,of,thermo 20.all 1.44,,1.45
24#Jun FINAL'EXAM'12A1:45

• Feynman lectures online (useful supplement)

http://www.feynmanlectures.info


INTERTUBES

• http://ph105.blogspot.com/ RSS feed, updated often

• grades will be posted, occasionally, on blackboard

• you can always ask me what your average is to check

• you should get all your work back

http://ph105.blogspot.com


STUFF YOU NEED

• textbook

• writing implements

• basic calculator (trig/log is enough)



SHOWING UP
•  we hope you will find some utility in the class

•  homework/labs/exams may rely on stuff I say in class

•  missing an exam is seriously bad.

 acceptable reason ... makeup or weight final



OTHER

• the pace is brutal. can’t be helped

• algebra, trigonometry, calculus I fluency assumed

• glance through Ch. 1 to make sure it is mostly review

• Read most of Ch. 2 & lab 1 for tomorrow

• you have problems due tomorrow (can ask in morning lab …)

• lecture ~ discussion of material; relies on you having read!



TODAY & NEXT TIME: 

MOTION IN 1D



THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Our friend the vector

• we will be doing terrible things with them

• vector = quantity requiring an arrow to represent
– coordinate-free description
– described by basis (unit) vectors of a coordinate system 

• proper vectors are unchanged by coordinate 
transformations ...



THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Adding & subtracting vectors

• commutative,  A+B = B+A
• associative,  A + (B+C) = (A+B) + C
• subtracting = add negative (reverse direction)

• add head-tail geometrically (law of cosines)
• add by component (using unit vectors)
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ĵ

~a + ~b = (a
x

+ b
x
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THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Geometrically:

By components: first choose a basis/coordinate system

magnitude identical to geometric approach

⇥a

⇥b
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THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Scalar multiplication

• Duh, the vector gets longer. 
• By component:

• Geometrically: the arrow gets c times longer
• Distributive.



⌅A · ⌅B = ⌅B · ⌅A ⌅A ·
�

⌅B + ⌅C
⇥

= ⌅A · ⌅B + ⌅A · ⌅C

⌃A · ⌃B = axbx + ayby = | ⌃A|| ⌃B| cos �AB

THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Scalar (“dot”) product
• product of vector A and the projection of B onto A
• scalar product of two vectors gives a scalar

• commutes, distributes

• two vectors are perpendicular if and only if their scalar 
product is zero



vector (“cross”) product
• product of vector A and B, gives 3rd vector 

perpendicular to A-B plane

| ⌅A� ⌅B| = | ⌅A|| ⌅B| sin �AB

⇧A� ⇧B = ⇧A ⇧B sin �AB n̂

n̂

• Distributes, does NOT commute

⇤A⇥ ⇤B = �
�

⇤B ⇥ ⇤A
⇥

⌅A�
�

⌅B � ⌅C
⇥

=
�

⌅A� ⌅B
⇥

+
�

⌅A� ⌅C
⇥



vector (“cross”) product
• ‘perpendicular’ direction not unique!

choice of ‘handedness’ or chirality. we pick RH.

(a)

(b)

(c)

(d)

x̂

ŷ

ẑ

RH

x̂

ŷ

ẑ

LH RH

cross products are not 
the same as their 
mirror images

Table 6: Algebraic properties of the vector product

formula relationship

⇥a ⇥ ⇥b = �⇥b⇥⇥a anticommutative
⇥a ⇥
�
⇥b +⇥c

⇥
=
�
⇥a ⇥ ⇥b

⇥
+ (⇥a ⇥⇥c) distributive over addition

(r⇥a)⇥ ⇥b = ⇥a ⇥ (r⇥b) = r(⇥a ⇥ ⇥b) compatible with scalar multiplication
⇥a ⇥ (⇥b⇥⇥c) + ⇥b⇥ (⇥c⇥⇥a) +⇥c⇥ (⇥a ⇥ ⇥b) = 0 not associative; obeys Jacobi identity
⇥a ⇥ (⇥b⇥⇥c) = ⇥b(⇥a · ⇥b)�⇥c(⇥a · ⇥b) triple vector product expansion
(⇥a ⇥ ⇥b)⇥⇥c = �⇥c⇥ (⇥a ⇥ ⇥b) = �⇥a(⇥b ·⇥c) + ⇥b(⇥a ·⇥c) triple vector product expansion
⇥a · (⇥b⇥⇥c) = ⇥b · (⇥c⇥⇥a) = ⇥c · (⇥a ⇥ ⇥b) triple scalar product expansion†

|⇥a ⇥ ⇥b|2 + |⇥a · ⇥b|2 = |⇥a|2|⇥b|2 relation between cross and dot product
if ⇥a ⇥ ⇥b = ⇥a ⇥⇥c then ⇥b = ⇥c i� ⇥a · ⇥b = ⇥a ·⇥c lack of cancellation

†Note that the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it
were, it would leave the cross product of a vector and a scalar, which is not defined

ı̂⇥ �̂ = k̂
�̂⇥ k̂ = ı̂

k̂⇥ ı̂ = �̂

Example: Solving systems of linear equations

Say we have three equations and three unknowns, and we are left with the pesky problem of solving
them. There are many ways to do this, we will illustrate two of them. Take, for example, three
equations that result from applying Kirchho�’s rules to a particular multiple loop dc circuit:

I1 � I2 � I3 = 0
R1I1 +R3I3 = V1

R2I2 �R3I3 = �V2

The first way we can proceed is by substituting the first equation into the second:

V1 = R1I1 +R3I3 = R1 (I2 + I3) +R3I3 = R1I2 + (R1 +R3) I3
=⇤ V1 = R1I2 + (R1 +R3) I3

Now our three equations look like this:

Table6:Algebraicpropertiesofthevectorproduct

formularelationship

⇥a⇥⇥b=�⇥b⇥⇥aanticommutative
⇥a⇥

�
⇥b+⇥c

⇥
=

�
⇥a⇥⇥b

⇥
+(⇥a⇥⇥c)distributiveoveraddition

(r⇥a)⇥⇥b=⇥a⇥(r⇥b)=r(⇥a⇥⇥b)compatiblewithscalarmultiplication
⇥a⇥(⇥b⇥⇥c)+⇥b⇥(⇥c⇥⇥a)+⇥c⇥(⇥a⇥⇥b)=0notassociative;obeysJacobiidentity
⇥a⇥(⇥b⇥⇥c)=⇥b(⇥a·⇥b)�⇥c(⇥a·⇥b)triplevectorproductexpansion
(⇥a⇥⇥b)⇥⇥c=�⇥c⇥(⇥a⇥⇥b)=�⇥a(⇥b·⇥c)+⇥b(⇥a·⇥c)triplevectorproductexpansion
⇥a·(⇥b⇥⇥c)=⇥b·(⇥c⇥⇥a)=⇥c·(⇥a⇥⇥b)triplescalarproductexpansion†

|⇥a⇥⇥b|2+|⇥a·⇥b|2=|⇥a|2|⇥b|2relationbetweencrossanddotproduct
if⇥a⇥⇥b=⇥a⇥⇥cthen⇥b=⇥ci�⇥a·⇥b=⇥a·⇥clackofcancellation
†Notethattheparenthesesmaybeomittedwithoutcausingambiguity,sincethedotproductcannotbeevaluatedfirst.Ifit

were,itwouldleavethecrossproductofavectorandascalar,whichisnotdefined

ı̂⇥�̂=k̂
�̂⇥k̂=ı̂

k̂⇥ı̂=�̂

Example:Solvingsystemsoflinearequations

Saywehavethreeequationsandthreeunknowns,andweareleftwiththepeskyproblemofsolving
them.Therearemanywaystodothis,wewillillustratetwoofthem.Take,forexample,three
equationsthatresultfromapplyingKirchho�’srulestoaparticularmultipleloopdccircuit:

I1�I2�I3=0
R1I1+R3I3=V1

R2I2�R3I3=�V2

Thefirstwaywecanproceedisbysubstitutingthefirstequationintothesecond:

V1=R1I1+R3I3=R1(I2+I3)+R3I3=R1I2+(R1+R3)I3
=⇤V1=R1I2+(R1+R3)I3

Nowourthreeequationslooklikethis:



Table 6: Algebraic properties of the vector product

formula relationship

⇥a ⇥ ⇥b = �⇥b⇥⇥a anticommutative
⇥a ⇥

⇥
⇥b +⇥c

⇤
=
⇥
⇥a ⇥ ⇥b

⇤
+ (⇥a ⇥⇥c) distributive over addition

(r⇥a)⇥ ⇥b = ⇥a ⇥ (r⇥b) = r(⇥a ⇥ ⇥b) compatible with scalar multiplication
⇥a ⇥ (⇥b⇥⇥c) + ⇥b⇥ (⇥c⇥⇥a) +⇥c⇥ (⇥a ⇥ ⇥b) = 0 not associative; obeys Jacobi identity
⇥a ⇥ (⇥b⇥⇥c) = ⇥b(⇥a · ⇥b)�⇥c(⇥a · ⇥b) triple vector product expansion
(⇥a ⇥ ⇥b)⇥⇥c = �⇥c⇥ (⇥a ⇥ ⇥b) = �⇥a(⇥b ·⇥c) + ⇥b(⇥a ·⇥c) triple vector product expansion
⇥a · (⇥b⇥⇥c) = ⇥b · (⇥c⇥⇥a) = ⇥c · (⇥a ⇥ ⇥b) triple scalar product expansion†

|⇥a ⇥ ⇥b|2 + |⇥a · ⇥b|2 = |⇥a|2|⇥b|2 relation between cross and dot product
if ⇥a ⇥ ⇥b = ⇥a ⇥⇥c then ⇥b = ⇥c i� ⇥a · ⇥b = ⇥a ·⇥c lack of cancellation

†Note that the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it
were, it would leave the cross product of a vector and a scalar, which is not defined

ı̂⇥ �̂ = k̂
�̂⇥ k̂ = ı̂

k̂⇥ ı̂ = �̂

⌅

��⌃

ax ay az
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  ⌥

Or, explicitly:

⇥A ·
⇥
⇥B⇥ ⇥C

⇤
=

��������

ax ay az

bx by bz

cx cy cz

��������
= (axbycz � axbzcy) + (aybzcx � aybxcz) + (azbxcy � azbycx)

Example: Solving systems of linear equations

Say we have three equations and three unknowns, and we are left with the pesky problem of solving
them. There are many ways to do this, we will illustrate two of them. Take, for example, three
equations that result from applying Kirchho�’s rules to a particular multiple loop dc circuit:

some things that may prove handy later ...

Put another way, given two vectors, the angle between them can be found readily:

� = cos�1
�

⇤a · ⇤b
|⇤a||⇤b|

⇥

Of course, this implies that if ⇤a and ⇤b are orthogonal (at right angles), their dot product is zero:

if ⇤a � ⇤b, then ⇤a · ⇤b = 0

Moreover, two vectors are orthogonal (perpendicular) if and only if their dot product is zero, and
they have non-zero length, providing a simple way to test for orthogonality. A few other properties
are tabulated below, as well as the scalar product between unit vectors in di�erent coordinate
systems.

Table 4: Algebraic properties of the scalar product

formula relationship

⇤a · ⇤b = ⇤b ·⇤a commutative
⇤a · (⇤b +⇤c) = ⇤a · ⇤b +⇤a ·⇤c distributive

⇤a · (r⇤b +⇤c) = r(⇤a · ⇤b) + r(⇤a ·⇤c) bilinear
(c1⇤a) · (c2⇤b) = (c1c2)(⇤a · ⇤b) multiplication by scalars
if ⇤a � ⇤b, then ⇤a · ⇤b = 0 orthogonality

Table 5: Scalar products of unit vectors

Cartesian Spherical Cylindrical

ı̂ ⇥̂ k̂ r̂ �̂ �̂ R̂ �̂ k̂
ı̂ 1 0 0 sin � cos⇥ cos � cos⇥ - sin⇥ cos⇥ - sin⇥ 0
⇥̂ 0 1 0 sin � sin⇥ cos � sin⇥ cos⇥ sin⇥ cos⇥ 0
k̂ 0 0 1 cos � - sin � 0 0 0 1

Vector products

The ‘cross’ or vector product between these two vectors results in a pseudovector, also known as an
‘axial vector.’i An easy way to remember how to calculate the cross product of these two vectors,

iPseudovectors act just like real vectors, except they gain a sign change under improper rotation. See for example,
the Wikipedia page “Pseudovector.” An improper rotation is an inversion followed by a normal (proper) rotation,
just what we are doing when we switch between right- and left-handed coordinate systems. A proper rotation has no
inversion step, just rotation.



x̂

ŷ

ẑ ⇥r P(x, y, z)vectors are how we define 
positions & directions

~r = x î + y ĵ + z ẑ

|~r|2 = x

2 + y

2 + z

2 = ~r ·~r

r̂ =
~r

|~r|

from origin to P

distance

direction - unit vector



infinitesimal displacements along a path

(x, y, z)� (x + dx, y + dy, z + dz)

described by a infinitesimal vector

d⌃l = dx x̂ + dy ŷ + dz ẑ

depends on coordinate system

(spherical)

P (x, y, z)

P �(x + dx, y + dy, z + dz)

d⇤l

d⌃l = dr r̂ + r sin � d� �̂ + r dr d� ⇥̂

build up a whole path by 
integrating all such dl’s
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ϕ R

(R, ϕ, z)

x

y

z

rθ
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(r, θ, ϕ)
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(x, y, z)

cartesian
x,y,z

cylindrical
R,φ,z
s,φ,z

spherical
r,θ,φ


