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Problem Set 4: Solutions

1. Jackson 1.6 Two long, cylindrical conductors of radius a1 and a2 are parallel and separated by a distance
d which is large compared with either radius. Find the capacitance per unit length of the two conductors.

In order to find the capacitance per unit length between the two cylinders, we need to find the po-
tential difference between them assuming that one carries a charge Q and the other −Q. Since the
cylinders supposed to be “long," we will say instead that each has a charge per unit length of λ, with
Q = λl, where l is the total length of the cylinder. Since we want capacitance per unit length in the
end, this will be convenient.

Let us choose a coordinate system which has its origin on the center of the first cylinder of radius a1,
which means the center of the second cylinder of radius a2 is located at r =d. Take the +r̂ direction
to be along a line connecting the center of the two conductors toward the conductor of radius r2.
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Figure 1: Geometry for problem 1.

Because the electric field obeys superposition, the total field at any point P is just the sum of the fields
due to each conductor separately. From Gauss’ law, we know that the field of each charged conductor
is the same as that of a charged rod of length l and charge per unit length λ. Taking a point P along
the axis connecting the center of the two conductors, we can find the total field readily:
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The potential difference between the two conductors can be found by integrating ~Etot · d~l over a path
connecting the surface of the two conductors. Since ~E is conservative, we can take any path we like,



and the most natural choice is to take a straight line path along r̂ along a line connecting the centers
of the two conductors (horizontal dashed line above), viz., r̂ dr. Thus,
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For the last line, we noted that λ = Q/l. Now using the definition of capacitance, Q = C∆V , or
C =Q/∆V , we have for the total capacitance
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or, as asked, the capacitance per unit length C/l:
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The last two steps are valid when d�a1, a2, and indicate that the capacitance is governed by the ratio
of the geometric mean of the two conductors’ radii to their separation.

2. Serway 26.72,75 Find the equivalent capacitance for both combinations shown below. Be sure to
consider the symmetry involved and the relative electric potential at different points in the circuits.
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Figure 2: Capacitor combinations.

In the first case, by symmetry the 3C capacitor has no potential difference across it. Since capacitors
in parallel have the same potential difference, both of the C capacitors have the same potential dif-
ference, and that means that both ends of the 3C capacitor are at the same potential. If that is true,
then no charge is stored Q=C∆V =0, and we can simply replace the 3C capacitor with a plain wire.
Once we have done that, we have a pair of C capacitors connected in parallel, in series with a pair
of 2C capacitors which are also connected in parallel. The two C’s give an equivalent capacitance of
2C, and the two 2C’s give an equivalent capacitance of 4C, so the whole circuit is equivalent to 2C in
series with 4C. This gives an equivalent capacitance of 4C/3.



In the second case, we can apply the same argument to the 8 µF capacitor - it cannot have a potential
difference across it, and it can therefore be replaced with a plain old wire. That leaves us with two
pairs of 4 µF and 2 µF capacitors in parallel, each of which can be replaced with a single 6 µF equiv-
alent capacitor. The whole circuit is then equivalent to two 6 µF capacitors in series, which is itself
equivalent to a single 3 µF capacitor.

3. Serway 26.64 A capacitor is constructed from two square plates of sides l and separation d. A material
of dielectric constant κ is inserted a distance x into the capacitor, as shown below. (a) Find the equivalent
capacitance of this device as a function of x. (b) Calculate the energy stored in the capacitor, letting
∆V represent the potential difference. (c) Find the direction and magnitude of the force exerted on the
dielectric, assuming a constant potential difference ∆V . Ignore friction.
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Figure 3: Capacitor combinations.

Whether the dielectric is there or not, we still have two plates held at a potential difference of ∆V , and
inserting the dielectric will not changes this. Therefore, once we have the dielectric part way inserted,
we can think of the situation as two capacitors in parallel - one filled with dielectric of width x and
length l, the other without dielectric of width l − x and length l. Both effective capacitors still have a
potential difference of ∆V applied. We can calculate the capacitance of each, and the total equivalent,
capacitance easily:
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The last form is perhaps more pleasing, since it tells us the equivalent capacitance compared to having
no dielectric at all (ε0l2/d). The total energy stored can now be found easily from the equivalent
capacitance and voltage. Remember: an equivalent capacitance is equivalent in every way, so the
energy in the equivalent capacitor is the same as that in the individual constituents.
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How about the force? We know the energy as a function of position, so this too is easy:
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The force in this case acts to the right, pulling the sheet in. This is because the dielectric is polarizable
- the top surface of the dielectric near the positive plate would develop a negative charge, and be
attracted to the capacitor, pulling the dielectric farther in. Another way to think about it is that the
capacitor stores more energy with the dielectric inside, so it will try to pull it in and maximize its
stored energy.i

4. Serway 26.65 Using the same figure as the previous question, imagine now that the block being inserted
is metal, rather than dielectric. Assume that d � l, and that the plates carries charges +Qo and −Qo. (a)
Calculate the stored energy as a function of x. (b) Find the direction and magnitude of the force acting
on the metallic block. Hint: a metal can be considered a perfect dielectric, κ → ∞, which allows no electric
field to penetrate it.

Once again, we can consider this to be two capacitors in parallel: one filled with metal, and the other
empty. We have to imagine that the metal fills the left half of the capacitor, but doesn’t touch the
plates - otherwise, we would short out the capacitor and no charge would be stored anywhere. Most
likely, shorting out the capacitor like this would cause something to break in a Bad way.

Anyway: the metal-filled half of the capacitor doesn’t store any energy at all. A metal can be consid-
ered analogous to a dielectric with κ→∞ Thus, for a fixed amount of charge Q0 and a fixed voltage ∆V
the stored energy Q2

o/2C → 0. Only the unfilled portion of the capacitor stores any energy. If each
plate in total has a charge Qo, then the unfilled portion of the plate must store charge proportional to
the uncovered area of the plate:
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The capacitance of the unfilled region we have already calculated above. The stored energy in the
unfilled region, and thus the whole capacitor, is thus
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The last form makes it clear that the energy stored is that of a completely unfilled capacitor, times the
fraction (l− x)/l that the metal fills the capacitor. Once again, we find the force from the gradient of
the potential energy:
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iIn fact, the presence of a force at all is entirely due to the fringing fields at the edges of the plates. After all, if not for
that region, the field would be perpendicular to the required direction of the force, and no work could be done! For a good
discussion of what is really going on, see The Feynman Lectures on Physics, vol. II, ch. 10, pp. 8-9, or an excellent article in the
American Journal of Physics, vol. 52, pp. 515-518, 1984, online here: http://link.aip.org/link/?AJPIAS/52/515/1. The
link will only work on campus.

http://link.aip.org/link/?AJPIAS/52/515/1


In this case, the force is actually to the left - the metal plate is pushed out of the capacitor, because
the capacitor stores more energy without it. Thus, the capacitor will expel the plate to maximize its
stored energy.

5. Purcell 3.5. A charge Q is located h meters above a conducting plane. How much work is required to
bring this charge out to an infinite distance above the plane? Hint: Consider the method of images.

There are two ways to approach this one. First, the presence of the conducting plane a distance h
from the positive charge means that this problem is equivalent to a dipole of spacing 2h, as we found
in exercise 3 (see figure below).ii Thus, we need to find the work required to move a charge q from a
distance 2h from a second charge−q out to infinity. Let the origin be halfway between the real charge
q and its image charge −q. The work required to move the positive charge away is:
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Figure 4: The field of a charge near a conducting plane, found by the method of images.

A much sneakier way is to realize that the energy in the electric field must just be half of that due
to a real dipole. We learned that the energy of a charge configuration can be found by integrating
the electric field over all space, U ∼

�
E2 dV . The electric field due to our point charge above the

conducting plane is identical to that of a dipole, but only for the region of space above the plane. Below
the plane, half of all volume in space, the field is zero. We can immediately conclude that the point
charge and infinite plane have half as much energy, since there is no field below the conducting plane.
The energy of a dipole we found already when we considered point charges. If the dipole spacing is
2h,
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iiSee http://faculty.mint.ua.edu/~pleclair/ph106/Exercises/EX3_SOLN.pdf

http://faculty.mint.ua.edu/~pleclair/ph106/Exercises/EX3_SOLN.pdf
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1. Purcell 3.5 Work and image charges [15 points]

We can calculate the force experienced by the charge Q by considering the electric field generated by its
image charge. However, we must remember that the image charge also moves when the original charge is
moved.
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The answer Q2

4h must be true because it takes no work to move the image charge, it is simply an image of
the original charge.
We can also look at this from the point of view of field energy. We learned in chapter 1 that U = 1
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∫
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The electric fields in the point charge and infinite plane system are identical to the system of two point
charges in the whole lane. We can immediately conclude that the system of the point charge and the infinite
plane has half as much energy because there are no fields in the lower half plane.
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2. Purcell 3.17 Designing a spherical capacitor [15 points]

A note on calculating capacitances. It may become confusing to calculate capacitance because there seems to
be an ambiguous sign (i.e. do we take φ1−φ2 or φ2−φ1?) that might result in a negative capacitance. One
way to calculate capacitance is to choose a convention where Q is positive and to calculate the potential from
it. Then, your choice of ∆φ must be positive. At the level of 8.022, another way is just to take the absolute
value of whatever capacitance answer you get, since normal materials never exhibit negative capacitance.

1

Figure 5: The field energy of our single charge with a conducting plate is half that of a dipole.

6. Two capacitors, one charged and the other uncharged, are connected in parallel. (a) Prove that when
equilibrium is reached, each carries a fraction of the initial charge equal to the ratio of its capacitance to
the sum of the two capacitances. (b) Show that the final energy is less than the initial energy, and derive
a formula for the difference in terms of the initial charge and the two capacitances.

This problem is easiest to start if you approach it from a conservation of energy & charge point of
view. We have two capacitors. Initially, one capacitor stores a charge Q1i, while the other is empty,
Q2i =0. After connecting them together in parallel, some charge leaves the first capacitor and goes to
the second, leaving the two with charges Q1f and Q2f , respectively. Now, since there were no sources
hooked up, and we just have the two capacitors, the total amount of charge must be the same before
and after we hook them together:

Qi = Qf

Q1i + Q2i = Q1f + Q2f

Q1i = Q1f + Q2f

We also know that if two capacitors are connected in parallel, they will have the same voltage ∆V
across them:
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The fraction of the total charge left on the first capacitor can be found readily combining what we
have:
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The second capacitor must have the rest of the charge:
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That was charge conservation. We can also apply energy conservation, noting that the energy of a
charged capacitor is Q2/2C:
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The final energy can be simplified using the result of the first part of the problem - we note that
Q1f =QiC1/ (C1 + C2) and Q2f =QiC2/ (C1 + C2)
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Thus, the final energy will be less than the initial energy, by a factor C1/ (C1 + C2) < 1.


