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PH 125 / LeClair Spring 2009

Exam II: Solutions

1. A block of mass m is released from rest at a height d =40 cm and slides down a frictionless ramp and onto a first
plateau, which has length d and where the coefficient of kinetic friction is us, = 0.5. If the block is still moving, it
then slides down a second frictionless ramp through height d/2 and onto a lower plateau, which has length d/2 and
where the coefficient of kinetic friction is again iy, =0.5. If the block is still moving, it then slides up a frictionless

ramp.

Where is the final stopping point of the block? If it is on a plateau, state which one and give the distance L from
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the left edge of that plateau.

Coming soon ...

2. A boy is initially seated on the top of a hemispherical ice mound of radius R. He begins to slide down the ice,
with a negligible initial speed. Approximate the ice as being frictionless. At what height does the boy loose contact
with the ice?

Find: The point at which the boy will loose contact with the hemisphere. If we know the point on the sphere, we
can easily find the height. Since the radius of the hemisphere is constant, we need only the boy’s angular position.
The point at which the boy will leave the sphere will be the point at which the normal force is zero - i.e., the point

at which there is no longer a force constraining him to stay on the surface.

Given: The radius of the sphere and the fact that it is frictionless.



Sketch: The only thing we need to add to the given picture is a free-body diagram and a coordinate system. Clearly,
(r,0) polar coordinates with an origin at the center of the hemisphere will be convenient. Let § =0, r = R define

the boy’s initial position.
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Once the boy is at a given angle 6, his height above the ground will be h = R cos , meaning he has moved down-
ward from his starting position by an amount Ah =R — h. The boy’s weight mg will be acting downward making
the same angle 6 with respect to a radial line at that point, while the normal force IV will act in the positive radial

direction.

Relevant equations: We need only energy conservation and centripetal force combined with Newton’s second
law. First, the force balance. Along the hemisphere’s radial direction (£), the net force must result in the centripetal

force:

-

We do not need the force balance along the angular (8) direction. Additionally, we will need conservation of energy

02
R
to find the velocity at any point. Since only conservative forces are present,

KZ-—I-UZ-:Kf-I-Uf

Symbolic solution: We first apply conservation of mechanical energy to find the boy’s velocity when he has slid
down the hemisphere through an angle §. We choose the ground level to be our zero for gravitational potential

energy. Between the boy’s starting point (7) and a later position 6 (f),

Ki+ U =Ky + Uy

1
0+ mgR = imv2 + mgR cosf

2

5 =
v? = 2gR (1 — cosf)

Since the centripetal force expression we need also involves v?, solving for v? should be sufficient. Next, we need
to apply a radial force balance to find the normal force on the boy. When the normal force vanishes, the boy will
leave the sphere. Using our sketch, we see that the radial component of the boy’s weight is mg cos 6. The only

other radial force is the normal force:
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ZF’" =7 =N —mgcosf

2
N =mgcosf — % =mgcost —2mg (1 — cos) = mg (3cosf —2) =0

2
— 0 = —
COS 3

Thus, the boy leaves the hemisphere at § =cos™* (%) ~48.2° His height above the ground at this point will be

2
thcost?R

Numeric solution: Since we are not given a specific radius of the rock, this is as good as it gets.
Double check:

3. A uniformly dense rope of length b and mass per unit length A is coiled on a smooth table. One end s lifted by
hand with constant velocity v,. Find the force of the rope held by the hand when the rope is a distance a above the
table (b> a).

Find: The force a rope exerts on a hand pulling it upward off of a table, as a function of position. The hand will

have to pull against the rope’s weight, but also against the changing momentum of the rope as more of it leaves the
table.

Given: The length b and linear mass density A, the constant velocity at which the rope is pulled.

Sketch: We want to know the total force between the hand and rope when a length a of the rope has been pulled
off of the table at constant speed v,.

dz?t
I

Take a small segment of rope dx a height x off of the table, as shown in the sketch above, with the +x direction
being upward. This small segment has mass dm = Adz, and was pulled off of the table at constant velocity v,.
Just before the segment was pulled off of the table, it was simply lying there with zero velocity and hence zero
momentum. An instant later, it is moving away from the table at velocity v,, which clearly implies a non-zero
momentum. This means that during the time dt it took to pull the segment dz off of the table completely, its
momentum changed from 0 to py. This time rate of change of momentum is a force.

Relevant equations: The main equation we will need is that force is the time rate of change of momentum:

P



Additionally, we need to know the weight of an arbitrary length of rope. Take a small section of rope of length a.

Since the mass per unit length of the rope is A, the mass of that segment must be \a, and its weight Agdz.

Symbolic solution: Consider again our segment of rope dz. It has mass dm and velocity v, just after it leaves the

table, and zero velocity just before. The momentum change dp in pulling that segment of rope off of the table is

dp = vodm = v, \dx

If this segment took dp to pull off of the table, we can easily find the time rate of change of momentum by dividing
by dt:

2)\

Here we used the fact that dx/dt is simply the velocity of the rope, which were are given as v,. This is the impulse
force that brings the string off the table, and which also acts on the hand pulling it off of the table. This impulse
force is independent of how much rope is already off of the table, which makes sense: it only involves changing
the momentum of an infinitesimal bit of rope at one instant, and does not depend on what the rest of the rope is
doing. Since the bit of rope changes its velocity from zero to straight upward, the impulse that the hand feels must
act in the downward direction by Newton’s third law. That is, the force acting on the hand F; must be equal and
opposite of the impulse force acting on the rope, which is equal to the rope’s time rate of change in momentum:
dp 2

F= 2y
ar

In addition to the impulse, the hand must also support the weight of the string already off of the table. A length a
of the rope must have mass Aa, and therefore the hand must support a weight of W = —\ga, also acting downward.

The total force on the hand is this weight plus the impulse force:

2
Fo =W+ F, = —Aga — W] = —Aga<1 + vo)
ag

Numeric solution: Once again, there are no numbers given.
Double check: Dimensionally, our answer is correct. Checking each term in our force balance, noting that A must
have units of kilograms per meter

Aga = [kgm™'] [ms?] [m] = [kgm/s*] = [N]
M2 = [kgm™'] [m*s*] = [N]

Our answer also makes sense qualitatively: both the impulse and weight force should get larger as A increases (i.e.,
as the rope gets heavier). As the total length of rope above the table a increases, the weight should increase while the
impulse force remains constant, which also makes sense. Finally, the impulse force should increase as the pulling

speed v, increases, while the weight should be unaffected.

4. Block 1 of mass m; is moving rightward at v; while block 2 of mass mg is moving rightward at vy < v;. The
surface is frictionless, and a spring of constant k is fixed to block 2. When the blocks collide, the compression of

the spring is maximum the instant the blocks have the same velocity.



(a) Show that

1 . mims
AK:KM'FKQZ'—KHZ*,U’UEE[ with = —————

2 mi + ma
where Ky; and K»; are the kinetic energies of blocks 1 and 2 before the collision, respectively, K15 is the kinetic
energy of the system at the moment the spring compression is maximum, and v, is the relative velocity of the two

blocks. The quantity 4 is known as the reduced mass of the system.

(b) Find the maximum compression of the spring.

Just for fun, we will solve this one two ways: from the usual “laboratory frame" where we watch both blocks from
the floor, and a frame of reference where block 2 is stationary. The latter is quite a bit less messy ... but does require
the foresight to think of it in the first place.

Find: The chance in kinetic energy of the blocks between the moment just before their collision and at the moment
the spring is at maximum compression, which is also the point at which the two blocks have equal speeds. We must

also find the maximum compression of the spring.

Given: A collision between two blocks, one of which has a spring connected to it. We know the block’s initial

speeds and the spring constant.
Sketch: We really don’t need anything beyond what is given.

Relevant equations: Owing to the spring force present, we cannot apply conservation of kinetic energy, meaning
we cannot use our equations for elastic collisions. However, since there is no friction, and we are not asked to
consider what happens after the spring reaches maximum compression we can use conservation of total energy,

including the spring’s potential energy Us:

K+ Koy = K2 + Us

We can also use conservation of momentum, as always. Using the same subscript labels as above,

DP1i + P2i = P12

Symbolic solution, “laboratory frame:" Initially, both blocks have kinetic energy, and the spring is uncompressed.
At the moment of the spring’s maximum compression, both blocks move together at the same speed, so we may
treat them as a single block of mass m; + my moving at velocity v. The spring will be compressed by an amount

« at this moment, and hence stores potential energy U, = 1ka?. Our energy balance is thus:

iPresumably, any energy losses due to destroying the blocks would occur just after this moment.



1 1
El' = Ku + Kgi = imlvf + imgvg

1 1
Ef :K12+Us = §(m1+m2)v2+§kx2

Equating the initial and final energies, we see that the AK we desire is the same as the spring’s potential energy.

1 1 1 1
AK = Kli + Kgl' — K12 = imlvf + §m2v§ — 5 (m1 +m2)v2 = Us = 5](5302

Once we find an expression for AK, we have the spring’s compression. We can also apply conservation of momen-

tum to this end:

P1i + D2i = P12
myv1 + movg = (my +ma)v
miv1 + Mav2

— V= —""—"""""""""" ="Yeom
mi + Mo

We should not be surprised by this result ... inserting our result for v into the our expression for AK eventually

gives use the answer we seek.

1

1 1
AK = —myvi + —mavs — = (my + ms) v?
2 2 2
2
1 1 1 m1v1 + MavUs
AK = §m1v% + §m2v§ ~3 (m1 + ms) [mlerg
2
2AK = ml’U% + mg’Ug — —(mlvl * m2v2)
my + Mo
OAK — (m1 + ma) (m1v? + mov3) — (M3vd + 2myimovive + m3v3)
o mi + mo
INK — m%v% + mlmgvg + mlmgvf + m%v% — m%v% — 2m1mavvy — m%v%
mi + mo
mims (v% + ’U% — 2111112) mims 2
2AK = = (v1 — v2)
mi +ma my + ma

1
— AK = iu’l]?el

We can now easily find the spring’s maximum compression:

1
AK = §k$2 - T = \/gvrel

Symbolic solution, frame where block 2 is still: Here we imagine we are sitting on block 2 and watching the
collision. This is a sensible frame to pick, since our desired result includes only the relative velocity anyway. In
this frame of reference, the velocity of block 1 relative to block 2 is v; — va = v, and the velocity of block 2 is
zero (since it is our reference point). The velocity of both blocks at the moment of maximum spring compression
is then v — vy, where v is the velocity of the two-block system with respect to the ground. Our kinetic energy

balance 1s then



1 1
Ky = §m1 (v1 — U2)2 Kip = By (m1+mo) (v — 02)2

Momentum conservation is similarly straightforward, and gives us another expression for v — vo

m(vy —v2) =(my+ma)(v—1v3) = v—vy=

Defining the kinetic energy change, and putting things together:

1 1
AK = 5 (v1 —v9)% — 3 (m1 +my) (v —vy)?

2 2

1 5 1 mi
AK = - —u)t— = M
my (v1 — vg) (mq + ma) [m1 e,

™ )
— (V1 — V:
1 + s 1 2

(v1 — Uz)r

1 2 m? 1 o [m? +myimg —m?
AK = = — -1 |1 == _

2 (1 = v2) {ml m1 + mo 2 (1 =) my + ms

1 5 | mime 1,
AK = - —_ —_— = -

2 (1 =) {ml + mg] Q'M}rel

The maximum compression of the spring is found in the same way as above.

Numeric solution: Perhaps you have noticed we are not big on numbers.

Double check: For the first part, we were simply asked to show that the result is true ... which seems to have
worked out just fine. The second part relies only on conservation of energy and basic algebra. Qualitatively makes
some sense that the spring compression is found by relating the kinetic energy change to the spring’s potential

energy. As the mass of either block increases, the reduced mass 1 increases monotonically (since mass is always

positive), and thus x increases, which is a sensible result.

s. A spring with a pointer attached is hanging next to a scale marked in millimeters. Three different packages are

hung from the spring, in turn, as shown below. (a) Which mark on the scale will the pointer indicate when no

package is hung from the spring? (b) What is the weight W of the third package?

mm mm

40 W

110N 60

240 N

30

Find: The weight of the unknown third package and equilibrium position of the spring.

Given: The position of the spring for two different known weights.

Sketch: The given sketch will be sufficient.



Relevant equations: We only need the weights of the first two packages and the force equation for a spring. Let
the three packages have weights Wy, W5 and W3

Wiy =110N W3 =240N W3 =7

The spring will respond with a force F' when displaced a distance « from its equilibrium position z.q

F=—-k (:c—xeq)

Symbolic solution: The weights of a given package must equal the restoring force of the spring. When weight i is

hung from the spring, it will stretch by an amount z; from equilibrium:

Wi =k (Qii — .’Eeq)
The ratio of the weights of the first two packages gives us an equation with only x4 as an unknown:
% o xr1 — xeq
W2 a Tog — l‘eq
W1$2 — Wl.’bcq = WQ!L‘l — ngcq
(Wo = Wh) = Wazy — Wiz

- WQ(El — W1$2
— Teq = W

Given the equilibrium distance, subtracting the weight of the first two packages yields the spring constant, which
we can use to find the weight of the third package:

W2 —W1 = kxg—kxl
Wy =W,

T2 —T1

k=

This makes sense - the distance the spring expands on changing the weight from W; to Wy is x2 — 1, the force
constant must be the ratio of this difference in force to the extra expansion distance. The weight of the third

package is now readily found from the expressions for k and .

Wy — W4 Wax1 — Wixa
Wi =k (2 — o) = ( — )[963— <W2—W1 )]

Numeric solution: Given W; =110N and W5 =240N along with 21 =0.04 m, 2 =0.06 m, and z3=0.03 m,

e — ngl — W1£U2
“ Wy — Wi

Wy — W3 Wax1 — Wixa
W= —— - —— ~ 4
’ (502—331){:63 ( Wy =W ﬂ N

~ 23 mm

Double check: You can verify easily that all of our expressions have the correct units. Clearly, package 3 must

weigh less than either package 1 or 2, since it causes less expansion of the spring.



We can also approach this problem in a less formal manner, relying only on the fact that ideal springs have a linear
force-displacement response. The difference in weight between packages 1 and 2 is 130 N and causes 0.02 m of extra
expansion, meaning the spring should have a force constant of 6500 N/m. Package 3 stretches the spring by 0.01 m
less than package 1, meaning it must weigh 65N less than package 1, or 45 N. This is in the end exactly what our
equations above tell us, we really only short-circuited the step of finding the equilibrium distance by subtracting
displacements.

6. In the figure below, puck 1 of mass m; = 0.20kg is sent sliding across a frictionless lab bench, to undergo a
one-dimensional elastic collision with stationary puck 2. Puck 2 then slides off the bench and lands a distance d
from the base of the bench. Puck 1 rebounds from the collision and slides off the opposite edge of the bench,
landing a distance 2d from the base of the bench. What is the mass of puck 2?

—2d— «d~]

Find: The mass of the second puck. The two pucks undergo an elastic collision, with the second block initially
at rest, and after the collision both pucks slide off the frictionless bench. The motion off of the bench is therefore

projectile motion, with a purely horizontal velocity determined by the final velocities after the collision.
Given: The mass of the first puck, its initial velocity, and the distance both pucks land from the edge of the bench.

Sketch: The given sketch is sufficient. Define an z axis horizontally, with +z to the right, and a y axis vertically,
with +y upward.

Relevant equations: We need the final velocities of both pucks after the (elastic) collision, which is most easily
found in the center of mass frame:

v1f = 2Veom — V1

Vaf = 2Ucom — Vo4
miv1; + Moz

Vcom =
mi1 + mo

Additionally, since both pucks have the same vertical velocity at the edge of the table (i.e., zero) and fall the same
vertical distance under the influence of gravity, their falling times are the same. Let time interval be At. The time
it takes to fall, along with the horizontal velocities after the collision determines the horizontal distance that the

pucks travel. Taking into account that the pucks are traveling in different directions,



’UlfAt = —-2d
UQfAt =d

Symbolic solution: Both pucks take the same amount of time to fall. Dividing the two equations above, we have

a relationship between the velocities after the collision and the relative horizontal distances:

’UlfAt - —2d
AL d
A _

V2 f

We can find vy and vay easily, as well as their ratio, from our elastic collision equations. Note that vo; = 0 since
the second puck is initially at rest:

2m1v1i + sz’l}zi 2m1v1i 2m11)1i -+ 2m21)2i mi1 — My
VIf = 2Vcom — V13 = -V = —————— — VU1 = = v14
my + meg my + mg mp + mg mp + mg
2m1
V2f = Weom = V14
mi + mo
(%1 myp — Mo
Va2 f 2777,1
mi1 — Mo = —4m1
mo = 5m1

Numeric solution: Given m; =0.2kg, mo=1kg.

Double check: We can check this in another way, namely, by conservation of energy. Initially, the total energy of
the system is only the kinetic energy of the first puck, if we let the bench’s surface be our zero for potential energy.
After the collision, but before the pucks fall off of the bench, the total energy is the kinetic energy of both pucks.
Between these two moments, the system’s energy must be conserved, since the collision is elastic and there is no
friction.
L o L oo 1 5
Ky = imlvli =Kiy+ Koy = §m1U1f + imwa

After the collision, we also know that puck 2’s speed is half that of puck 1, since it travels only half as far off the
table!

2lvaf| = vy
Thus,

1 2 1 2 1 2 1 2 1 2 1 2
§m11}1i = imlvlf + §m1v2f = §m1v1f + gmlvu =({mq1+ ng Ulf

v\ _Amg +ma
v1f a 4m1

10



Our collision equation also yields an expression for vq; /vy f:

Vi M1+ ma

U1f myp —1ma

Thus,

4m1 my, — Mo

4dmq + mo . (ml +m2>2

dmy +mg m% + 2mims + m%
4my m?2 — 2myma + m3

4m3 4 8mimy + dmyima = 4m3 — 8mimy + dmima + mimy — 2mym3 +m3

16m% = m% + m% — 2mimea (mg #0)
0 = 15m? + 2mymy — m3

—2my £ /AmZ + 4mZ (15)  —2my + /64m?2 92438 11
== mp = = = mo=4= ——4Lm
! 30 30 30 2 5 37

meo :5m1 :1kg

We have rejected the ms <0 solution above as being silly. Otherwise, the result is the same, as it should be.

II



