PHi2s Exam III

Instructions

I. Solve s of 8 problems below. All problems have equal weight.
2. Show your work for full credit. Significant partial credit will be given.
3. You are allowed 2 sides of an $8.5 \times \mathrm{I}$ in piece of paper with notes and a calculator.
I. A block of mass m is connected to two springs of force constants k_{1} and k_{2} as shown below. The block moves on a frictionless table after it is displaced from equilibrium and released. Determine the period of simple harmonic motion.

2. A horizontal plank of mass m and length L is pivoted at one end. The plank's other end is supported by a spring of force constant k. The moment of inertia of the plank about the pivot is $I=\frac{1}{3} m L^{2}$. The plank is displaced by an angle θ from horizontal equilibrium and released. Find the angular frequency ω of simple harmonic motion for small θ. Hint: start with the torques at equilibrium, and the spring in equilibrium compression.

3. Assume the earth to be a solid sphere of uniform density. A hole is drilled through the earth, passing through its center, and a ball is dropped into the hole. Neglect friction.
(a) Calculate the time for the ball to return to the release point. Hint: what sort of motion results?
(b) Compare the result of part a to the time required for the ball to complete a circular orbit of radius R_{E} about the earth
4. A wad of sticky clay with mass m and velocity v_{i} is fired at a solid cylinder of mass M and radius R as shown below. The cylinder is initially at rest and mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axis and at a distance $d<R$ from the center. Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. The moment of inertia of a solid cylinder is $I=\frac{1}{2} M R^{2}$, the moment of inertia of a point particle mass m a distance R from an axis of rotation is $I=m R^{2}$.

5. A satellite is in a circular Earth orbit of radius r. The area A enclosed by the orbit depends on r^{2} because $A=\pi r^{2}$. Determine how the following properties depend on r : (a) period, (b) kinetic energy, (c) angular momentum, and (d) speed.
6. Here are some functions:

$$
\begin{array}{ll}
f_{1}(x, t)=A e^{-b(x-v t)^{2}} & f_{2}(x, t)=\frac{A}{b(x-v t)^{2}+1} \\
f_{3}(x, t)=A e^{-b\left(b x^{2}+v t\right)} & f_{4}(x, t)=A \sin (b x) \cos (b v t)^{3}
\end{array}
$$

(a) Which ones satisfy the wave equation? Justify your answer with explicit calculations.
(b) For those functions that satisfy the wave equation, write down the corresponding functions $g(x, t)$ representing a wave of the same shape traveling in the opposite direction.
7. A string under tension T_{i} oscillates in the third harmonic $(n=3)$ at frequency f_{3}, and the waves on the string have wavelength λ_{3}. If the tension is increased to $T_{f}=4 T_{i}$, and the string is again made to oscillate in the third harmonic, what are then the (a) frequency of oscillation in terms of f_{3} and (b) the wavelength of the waves in terms of λ_{3} ?
8. A solid brass ball of mass m will roll smoothly along a loop-the-loop track when released from rest along the straight section. The circular loop has radius R, and the ball has radius $r \ll R$. What is h if the ball is on the verge of leaving the track when it reaches the top of the loop? Assume the ball has a moment of inertia $I=k m r^{2}, k \in \mathbb{R} \mid 0<k<1$.

Numbers \& units:

$$
\begin{aligned}
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} \quad M_{e}=5.96 \times 10^{24} \mathrm{~kg} \quad \leftarrow \text { earth } \\
R_{e} & =6.37 \times 10^{6} \mathrm{~m} \quad \leftarrow \text { earth } \quad G=6.67 \times 10^{11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}
\end{aligned}
$$

Math:

$$
\begin{aligned}
a x^{2}+b x^{2}+c & =0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\sin \alpha \pm \sin \beta & =2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta) \\
\cos \alpha \pm \cos \beta & =2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta) \\
c^{2} & =a^{2}+b^{2}-2 a b \cos \theta_{a b} \\
\frac{d}{d x} \sin a x & =a \cos a x \quad \frac{d}{d x} \cos a x=-a \sin a x \\
\int \cos a x \mathrm{dx} & =\frac{1}{a} \sin a x \quad \int \sin a x \mathrm{dx}=-\frac{1}{a} \cos a x \\
\sin \theta & \approx \theta \quad \operatorname{small} \theta \\
\cos \theta & \approx 1-\frac{1}{2} \theta^{2} \\
\overrightarrow{\mathbf{a}}(t)=\frac{d^{2} s}{d t^{2}} \hat{\mathbf{T}}+\kappa|\overrightarrow{\mathbf{v}}|^{2} \hat{\mathbf{N}} & =\frac{d^{2} s}{d t^{2}} \hat{\mathbf{T}}+\frac{|\overrightarrow{\mathbf{v}}|^{2}}{R} \hat{\mathbf{N}} \equiv a_{N} \hat{\mathbf{T}}+a_{T} \hat{\mathbf{N}}
\end{aligned}
$$

Vectors:

$$
\begin{aligned}
|\overrightarrow{\mathbf{F}}| & =\sqrt{F_{x}^{2}+F_{y}^{2}} \text { magnitude } \\
\theta & =\tan ^{-1}\left[\frac{F_{y}}{F_{x}}\right] \quad \text { direction } \\
d \overrightarrow{\mathbf{l}} & =d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}}+d z \hat{\mathbf{z}}
\end{aligned}
$$

$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=\sum_{i=1}^{n} a_{i} b_{i}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \quad|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta
$$

Waves:

$$
\begin{aligned}
y_{\rightarrow}(x, t) & =y_{m} \sin (k x-\omega t) \quad k=\frac{2 \pi}{\lambda} \\
v & =\frac{\omega}{k}=\frac{\lambda}{T}=\lambda f \quad \text { wave speed } \\
v & =\sqrt{T / \mu} \quad \mu=M / L \\
P_{a v g} & =\frac{1}{2} \mu v \omega^{2} y_{m}^{2} \quad \text { pwr } \\
\frac{\partial^{2} y}{\partial x^{2}} & =\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}} \quad \text { wave } \\
y_{t} & =2 y_{m} \cos \frac{\varphi}{2} \sin (k x-\omega t+\varphi / 2) \quad \text { int. } \\
y_{t} & =2 y_{m} \sin k x \cos \omega t \quad \text { standing } \\
f & =\frac{v}{\lambda}=\frac{n v}{2 L} \quad n \in \mathbb{N}
\end{aligned}
$$

Rotation: we use radians

$$
\begin{aligned}
s & =\theta r \quad \leftarrow \text { arclength } \\
\omega & =\frac{d \theta}{d t}=\frac{v}{r} \quad \alpha=\frac{d \omega}{d t} \\
a_{t} & =\alpha r \quad \text { tangential } \quad a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad \text { radial } \\
I & =\sum_{i} m_{i} r_{i}^{2} \Rightarrow \int r^{2} d m=k m r^{2} \\
I_{z} & =I_{\text {com }}+m d^{2} \quad \text { axis } z \text { parallel, dist } d \\
\tau_{n e t} & =\sum \overrightarrow{\boldsymbol{\tau}}=I \overrightarrow{\boldsymbol{\alpha}}=\frac{d \overrightarrow{\mathbf{L}}}{d t} \\
\overrightarrow{\boldsymbol{\tau}} & =\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad|\overrightarrow{\boldsymbol{\tau}}|=r F \sin \theta_{r F} \\
\overrightarrow{\mathbf{L}} & =\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=I \overrightarrow{\boldsymbol{\omega}} \\
K & =\frac{1}{2} I \omega^{2}=L^{2} / 2 I \\
\Delta K & =\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W=\int \tau d \theta \\
P & =\frac{d W}{d t}=\tau \omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { Gravitation: } \\
& \qquad \begin{aligned}
\overrightarrow{\mathbf{F}}_{12} & =\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}}_{12}=-\vec{\nabla} U_{g} \\
g & =\frac{G M_{e}}{R_{e}^{2}} \\
U_{g}(r) & =-\int F(r) d r=\frac{-G M m}{r} \\
K+U_{g} & =0 \quad \text { escape } \quad K+U_{g}<0 \quad \text { bound } \\
\frac{d A}{d t} & =\frac{1}{2} r^{2} \omega=\frac{L}{2 m} \quad T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3} \\
E_{\text {orbit }} & =\frac{-G M m}{2 a} \quad \text { elliptical; } a \rightarrow r \text { for circular }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Oscillations: } \\
& \begin{array}{c}
T=\frac{1}{f} \quad \omega=\frac{2 \pi}{T}=2 \pi f
\end{array} \\
& x(t)=x_{m} \cos (\omega t+\varphi) \\
& a=-\omega^{2} x \quad \frac{d^{2} q}{d t^{2}}=-\omega^{2} q \\
& \omega=\sqrt{k / m} \text { linear osc. } \\
& T= \begin{cases}2 \pi \sqrt{I / \kappa} & \text { torsion pendulum } \\
2 \pi \sqrt{L / g} & \text { simple pendulum } \\
2 \pi \sqrt{I / m g h} & \text { physical pendulum }\end{cases} \\
& U=-\frac{1}{2} k x^{2} \quad U=-\frac{1}{2} \kappa \theta^{2} \quad F=-\frac{d U}{d x}=m a \quad \text { SHM } \\
& x(t)=x_{m} e^{-b t / 2 m} \cos \left(\omega^{\prime} t+\varphi\right) \quad \text { damped } \\
& \omega^{\prime}=\sqrt{k / m-b^{2} / 4 m}
\end{aligned}
$$

Derived unit	Symbol	equivalent to
newton	N	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
joule	J	$\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}=\mathrm{N} \cdot \mathrm{m}$
watt	W	$\mathrm{J} / \mathrm{s}=\mathrm{m}^{2} \cdot \mathrm{~kg} / \mathrm{s}^{3}$

