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PH125 Exam IV: Solutions
1. The space shuttle releases a 470 kg satellite while in an orbit 280 km above the surface of the
earth. A rocket engine on the satellite boosts it to a geosynchronous orbit. How much energy is
required for the orbit boost? (Note: the earth’s radius is 6378 km, its mass is 5.98 × 1024 kg, and
G = 6.67× 10−11N ·m2kg−2. Hint: “geosynchronous" means the satellite’s period T is 24 hrs.)

Solution: For a geosynchronous orbit, the period T is 24 hr. Using Kepler’s law, we can find the
distance from the earth’s center for this orbit:

T 2 = 4π2rg3

GMe
(1)

rg = 3

√
GMT 2

4π2 ≈ 42, 300 km (2)

Thus, the satellite changes its orbit to 42, 300 km starting from h=280 km above the earth’s surface,
a distance Re+h from the earth’s center. Remember that it is the distance from the earth’s center,
not its surface, which is important for gravitation. This will clearly change the satellite’s potential
energy, but its kinetic energy will also change. Fortunately, we know the total energy (kinetic plus
potential) of an orbiting body of mass m is Etot =−1

2
GMem

r . The change in energy is thus

∆Etot = −1
2
GMem

rg
−
(
−1

2
GMem

Re + h

)
≈ 1.2× 1010 J (3)

2. Calculate the mass of the Sun given that the Earth’s distance from the Sun is 1.496 × 1011m.
(Hint: you already know the period of the Earth’s orbit.)

Solution: We know the earth’s period of rotation T is about 365 days, or about 3.15×107 s. Given
the earth’s orbital distance r, we can use Kepler’s law to find the mass of the sun Ms.

T 2 = 4π2r3

GMs
(4)

Ms = 4π2r3

GT 2 ≈ 2× 1030 kg (5)

3. The free-fall acceleration on the surface of the Moon is about one sixth of that on the surface
of the Earth. If the radius of the Moon is about 0.250RE , find the ratio of their average densities,
ρMoon/ρEarth.

Solution: The force on an object of mass m a distance r from the earth’s center is
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Fe = −GMem

r2 ≈ mge (6)

Near the earth’s surface, this force is approximately constant, and we make the identification
ge=GMe/r

2. On the moon, the same mass m a distance r from the center of the moon would feel
a force

Fg = −GMmm

r2 ≈ mgm (7)

Thus, gm =GMm/r
2. We are told gm/ge = 1/6, and we know the masses in terms of the average

densities:

Mm = 4
3πR

3
mρm (8)

Me = 4
3πR

3
eρe (9)

The ratio gm/ge will then allow us to determine the ratio of the densities:

gm
ge

= ρm
ρe

(
Re
Rm

)2 (Rm
Re

)3
= Rmρm

Reρe
= 1

6 (10)

Since we are told Rm= 1
4R3, this gives

ρm
ρe

= gmRe
geRm

= 1
6 ·

4
1 = 2

3 (11)

4. In the figure below, two masses are connected to each other and vertical walls by three identical
springs. Presume m1 = m2 for simplicity. As it turns out, there are two stable frequencies of
oscillation of the system. Find one of them. Hint: there are two obvious ways the two masses can
move relative to each other. One of them is really simple.

Figure 1: From http: // en. wikipedia. org/ wiki/ Normal_ mode .

Solution: There are only two stable modes of oscillation that can persist: either the masses move
in unison, or they move perfectly in opposition to one another. If the masses move in unison, the
central spring has no displacement, and there is no net force between the two masses. If that is the
case, each mass behaves as though it is only connected by a single spring of constant k, and the

http://en.wikipedia.org/wiki/Normal_mode
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frequency is just ω=
√
k/m. (The other frequency, with the masses moving perfectly out of phase,

ends up being ω=
√

3k/m.)

Recall that we solved this in HW6, see the solution to problem 9, in particular the special case of
equal masses and springs on page 12.

5. Energetics of diatomic systems. An expression for the potential energy of two neutral atoms as
a function of their separation x is given by the Morse potential,

U(r) = Uo
[
1− e−a(r−ro)

]2
(12)

where xo is the equilibrium spacing. Calculate the force constant for small oscillations about r=ro.
Hint: At equilibrium, the net force is zero. For small δ, one may approximate eδ≈1+δ+ 1

2δ
2 + · · · .

Solution: Just for fun, let’s find the equilibrium spacing and dissociation energy too. Equilibrium
is in general characterized by a net force of zero, or a minimum of potential energy: F =−dU/dr=0.
Thus, we find the equilibrium spacing by figuring out at what radius (or radii) this condition is
met.

dU

dr
= 2Uo

[
1− e−a(r−ro)

] (
ae−a(r−ro)

)
= 0 (13)

Either of the terms in brackets could be zero. The latter only leads to the trivial solution of r→∞,
meaning there is no molecule in the first place. Setting the former term in brackets to zero,

0 = 1− e−a(r−ro) =⇒ r = ro (14)

The equilibrium spacing is just the parameter ro in the potential energy function, which is nice. The
dissociation energy is defined as the amount of energy required to take the system from equilibrium
at r=ro to complete breakup for r→∞. Thus,

(dissociation energy) =
[

lim
r→∞

U(r)
]
− U(ro) = Uo − 0 = Uo (15)

In other words, an amount of work Uo is required to bring about an infinite separation of the atoms,
and this defines the dissociation energy.

If we wish to calculate a force constant, it is necessary to show that the force at least approximately
obeys Hooke’s law for small displacements, i.e., for a small displacement δ from equilibrium, δ=
r−ro, F (ro + δ)≈ kδ where k is the force constant.i We have already calculated the force versus
displacement:

iEquivalently, we could show U(δ)≈ 1
2kδ

2.
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F (r) = −dU
dr

= −2Uo
[
1− e−a(r−ro)

] (
ae−a(r−ro)

)
= −2Uoa

(
e−a(r−ro) − e−2a(r−ro)

)
F (ro + δ) = −2Uoa

(
e−aδ − e−2aδ

)
(16)

For small δ, we may make use of the approximation eδ≈ 1 + δ + 1
2δ

2 + · · · . Retaining terms only
up to first order,

F (ro + δ) ≈ −2Uoa (1− aδ − 1 + 2aδ) = −
(
2Uoa2

)
δ =⇒ k = 2Uoa2 (17)

Thus, for small displacements from equilibrium, we may treat the molecule as a mass-spring system,
with an effective force constant k. Note that we could have equivalently used the method from the
last problem, k=U ′′, but it is worth seeing how to approach the problem in a different way. For
further information, the Wikipedia article is quite informative:

http://en.wikipedia.org/wiki/Morse_potential

http://en.wikipedia.org/wiki/Morse_potential


Numbers & units:
g = 9.81 m/s2 Me = 5.96× 1024 kg ← earth

Re = 6.37× 106 m ← earth G = 6.67× 1011 N m2/kg2

Math:

ax2 + bx2 + c = 0 =⇒ x =
−b±

√
b2 − 4ac

2a

sinα± sinβ = 2 sin
1
2

(α± β) cos
1
2

(α∓ β)

cosα± cosβ = 2 cos
1
2

(α+ β) cos
1
2

(α− β)

c2 = a2 + b2 − 2ab cos θab

d

dx
sin ax = a cos ax

d

dx
cos ax = −a sin ax∫

cos axdx =
1
a

sin ax
∫

sin axdx = −
1
a

cos ax

sin θ ≈ θ small θ

cos θ ≈ 1−
1
2
θ2

~a(t) =
d2s

dt2
T̂ + κ|~v|2 N̂ =

d2s

dt2
T̂ +

|~v|2

R
N̂ ≡ aN T̂ + aT N̂

Vectors:
|~F| =

√
F 2

x + F 2
y magnitude

θ = tan−1
[
Fy

Fx

]
direction

d~l = dx x̂ + dy ŷ + dz ẑ

~a · ~b =axbx + ayby + azbz =
n∑

i=1

aibi = |~a||~b| cos θ

~a × ~b =

∣∣∣∣∣∣
x̂ ŷ ẑ
ax ay az

bx by bz

∣∣∣∣∣∣ |~a × ~b| = |~a||~b| sin θ

Waves:
y→(x, t) = ym sin (kx− ωt) k =

2π
λ

v =
ω

k
=
λ

T
= λf wave speed

v =
√
T/µ µ = M/L

Pavg =
1
2
µvω2y2

m pwr

∂2y

∂x2 =
1
v2
∂2y

∂t2
wave

yt = 2ym cos
ϕ

2
sin (kx− ωt+ ϕ/2) int.

yt = 2ym sin kx cosωt standing

f =
v

λ
=
nv

2L
n ∈ N

Rotation: we use radians
s = θr ← arclength

ω =
dθ

dt
=
v

r
α =

dω

dt

at = αr tangential ar =
v2

r
= ω2r radial

I =
∑

i

mir
2
i ⇒

∫
r2 dm = kmr2

Iz = Icom +md2 axis z parallel, dist d

τnet =
∑

~τ = I~α =
d~L
dt

~τ =~r× ~F |~τ | = rF sin θrF

~L =~r× ~p = I~ω

K =
1
2
Iω2 = L2/2I

∆K =
1
2
Iω2

f −
1
2
Iω2

i = W =
∫

τ dθ

P =
dW

dt
= τω

Gravitation:
~F12 =

Gm1m2

r2 r̂12 = −~∇Ug

g =
GMe

R2
e

Ug(r) = −
∫

F (r) dr =
−GMm

r

K + Ug = 0 escape K + Ug < 0 bound

dA

dt
=

1
2
r2ω =

L

2m
T 2 =

(
4π2

GM

)
r3

Eorbit =
−GMm

2a
elliptical; a→ r for circular

Oscillations:
T =

1
f

ω =
2π
T

= 2πf

x(t) = xm cos (ωt+ ϕ)

a = −ω2x
d2q

dt2
= −ω2q

ω =
√
k/m linear osc.

T =


2π
√
I/κ torsion pendulum

2π
√
L/g simple pendulum

2π
√
I/mgh physical pendulum

U = −
1
2
kx2 U = −

1
2
κθ2 F = −

dU

dx
= ma SHM

x(t) = xme
−bt/2m cos

(
ω′t+ ϕ

)
damped

ω′ =
√
k/m− b2/4m

5


