PH125 Exam IV: A New Hope

Instructions

1. Solve 3 of 5 problems below. All problems have equal weight.
2. Show your work for full credit. Significant partial credit will be given.
3. You are allowed 2 sides of an 8.5×11 in piece of paper with notes and a calculator.
4. The space shuttle releases a 470 kg satellite while in an orbit 280 km above the surface of the earth. A rocket engine on the satellite boosts it to a geosynchronous orbit. How much energy is required for the orbit boost? (Note: the earth's radius is 6378 km , its mass is $5.98 \times 10^{24} \mathrm{~kg}$, and $G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \mathrm{~kg}^{-2}$. Hint: "geosynchronous" means the satellite's period T is 24 hrs .)
5. Calculate the mass of the Sun given that the Earth's distance from the Sun is $1.496 \times 10^{11} \mathrm{~m}$. (Hint: you already know the period of the Earth's orbit.)
6. The free-fall acceleration on the surface of the Moon is about one sixth of that on the surface of the Earth. If the radius of the Moon is about $0.250 R_{E}$, find the ratio of their average densities, $\rho_{\text {Moon }} / \rho_{\text {Earth }}$.
7. In the figure below, two masses are connected to each other and vertical walls by three identical springs. Presume $m_{1}=m_{2}$ for simplicity. As it turns out, there are two stable frequencies of oscillation of the system. Find one of them. Hint: there are two obvious ways the two masses can move relative to each other. One of them is really simple.

8. Energetics of diatomic systems. An expression for the potential energy of two neutral atoms as a function of their separation x is given by the Morse potential,

$$
\begin{equation*}
U(x)=U_{o}\left[1-e^{-a\left(x-x_{o}\right)}\right]^{2} \tag{1}
\end{equation*}
$$

where x_{o} is the equilibrium spacing. Calculate the force constant for small oscillations about $r=r_{o}$. Hint: At equilibrium, the net force is zero. For small δ, one may approximate $e^{\delta} \approx 1+\delta+\frac{1}{2} \delta^{2}+\cdots$.

Numbers \& units:

$g=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad M_{e}=5.96 \times 10^{24} \mathrm{~kg} \quad \leftarrow$ earth
$R_{e}=6.37 \times 10^{6} \mathrm{~m} \quad \leftarrow$ earth $\quad G=6.67 \times 10^{11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$

Math:

$$
a x^{2}+b x^{2}+c=0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\sin \alpha \pm \sin \beta=2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta)
$$

$$
\cos \alpha \pm \cos \beta=2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)
$$

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta_{a b}
$$

$$
\frac{d}{d x} \sin a x=a \cos a x \quad \frac{d}{d x} \cos a x=-a \sin a x
$$

$$
\int \cos a x \mathrm{dx}=\frac{1}{a} \sin a x \quad \int \sin a x \mathrm{dx}=-\frac{1}{a} \cos a x
$$

$$
\sin \theta \approx \theta \quad \text { small } \theta
$$

$$
\cos \theta \approx 1-\frac{1}{2} \theta^{2}
$$

$$
\overrightarrow{\mathbf{a}}(t)=\frac{d^{2} s}{d t^{2}} \hat{\mathbf{T}}+\kappa|\overrightarrow{\mathbf{v}}|^{2} \hat{\mathbf{N}}=\frac{d^{2} s}{d t^{2}} \hat{\mathbf{T}}+\frac{|\overrightarrow{\mathbf{v}}|^{2}}{R} \hat{\mathbf{N}} \equiv a_{N} \hat{\mathbf{T}}+a_{T} \hat{\mathbf{N}}
$$

Vectors:

$$
\begin{aligned}
|\overrightarrow{\mathbf{F}}| & =\sqrt{F_{x}^{2}+F_{y}^{2}} \quad \text { magnitude } \\
\theta & =\tan ^{-1}\left[\frac{F_{y}}{F_{x}}\right] \quad \text { direction } \\
d \overrightarrow{\mathbf{l}} & =d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}}+d z \hat{\mathbf{z}}
\end{aligned}
$$

$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=\sum_{i=1}^{n} a_{i} b_{i}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \quad|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta
$$

Waves:

$$
\begin{aligned}
y_{\rightarrow}(x, t) & =y_{m} \sin (k x-\omega t) \quad k=\frac{2 \pi}{\lambda} \\
v & =\frac{\omega}{k}=\frac{\lambda}{T}=\lambda f \quad \text { wave speed } \\
v & =\sqrt{T / \mu} \quad \mu=M / L \\
P_{a v g} & =\frac{1}{2} \mu v \omega^{2} y_{m}^{2} \quad \text { pwr } \\
\frac{\partial^{2} y}{\partial x^{2}} & =\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}} \quad \text { wave } \\
y_{t} & =2 y_{m} \cos \frac{\varphi}{2} \sin (k x-\omega t+\varphi / 2) \quad \text { int. } \\
y_{t} & =2 y_{m} \sin k x \cos \omega t \quad \text { standing } \\
f & =\frac{v}{\lambda}=\frac{n v}{2 L} \quad n \in \mathbb{N}
\end{aligned}
$$

Rotation: we use radians

$$
\begin{aligned}
s & =\theta r \quad \leftarrow \text { arclength } \\
\omega & =\frac{d \theta}{d t}=\frac{v}{r} \quad \alpha=\frac{d \omega}{d t} \\
a_{t} & =\alpha r \quad \text { tangential } \quad a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad \text { radial } \\
I & =\sum_{i} m_{i} r_{i}^{2} \Rightarrow \int r^{2} d m=k m r^{2} \\
I_{z} & =I_{c o m}+m d^{2} \quad \text { axis } z \text { parallel, dist } d \\
\tau_{n e t} & =\sum_{\vec{\tau}} \overrightarrow{\boldsymbol{\tau}}=I \overrightarrow{\boldsymbol{\alpha}}=\frac{d \overrightarrow{\mathbf{L}}}{d t} \\
\overrightarrow{\mathbf{L}} & =\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=I \overrightarrow{\boldsymbol{\omega}} \mid=r F \sin \theta_{r F} \\
K & =\frac{1}{2} I \omega^{2}=L^{2} / 2 I \\
\Delta K & =\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W=\int \tau d \theta \\
P & =\frac{d W}{d t}=\tau \omega
\end{aligned}
$$

Gravitation:

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{12} & =\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}}_{12}=-\vec{\nabla} U_{g} \\
g & =\frac{G M_{e}}{R_{e}^{2}} \\
U_{g}(r) & =-\int F(r) d r=\frac{-G M m}{r} \\
K+U_{g} & =0 \quad \text { escape } \quad K+U_{g}<0 \quad \text { bound } \\
\frac{d A}{d t} & =\frac{1}{2} r^{2} \omega=\frac{L}{2 m} \quad T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3} \\
E_{\text {orbit }} & =\frac{-G M m}{2 a} \quad \text { elliptical; } a \rightarrow r \text { for circular }
\end{aligned}
$$

Oscillations:

$$
T=\frac{1}{f} \quad \omega=\frac{2 \pi}{T}=2 \pi f
$$

$$
x(t)=x_{m} \cos (\omega t+\varphi)
$$

$$
a=-\omega^{2} x \quad \frac{d^{2} q}{d t^{2}}=-\omega^{2} q
$$

$$
\omega=\sqrt{k / m} \text { linear osc. }
$$

$$
T= \begin{cases}2 \pi \sqrt{I / \kappa} & \text { torsion pendulum } \\ 2 \pi \sqrt{L / g} & \text { simple pendulum } \\ 2 \pi \sqrt{I / m g h} & \text { physical pendulum }\end{cases}
$$

$$
U=-\frac{1}{2} k x^{2} \quad U=-\frac{1}{2} \kappa \theta^{2} \quad F=-\frac{d U}{d x}=m a \quad \mathrm{SHM}
$$

$x(t)=x_{m} e^{-b t / 2 m} \cos \left(\omega^{\prime} t+\varphi\right) \quad$ damped

$$
\omega^{\prime}=\sqrt{k / m-b^{2} / 4 m}
$$

