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PH125 Exam IV: A New Hope
Instructions

1. Solve 3 of 5 problems below. All problems have equal weight.
2. Show your work for full credit. Significant partial credit will be given.
3. You are allowed 2 sides of an 8.5 x 11 in piece of paper with notes and a calculator.

1. The space shuttle releases a 470 kg satellite while in an orbit 280 km above the surface of the
earth. A rocket engine on the satellite boosts it to a geosynchronous orbit. How much energy is
required for the orbit boost? (Note: the earth’s radius is 6378 km, its mass is 5.98 × 1024 kg, and
G = 6.67 × 10−11N ·m2kg−2. Hint: “geosynchronous" means the satellite’s period T is 24 hrs.)

2. Calculate the mass of the Sun given that the Earth’s distance from the Sun is 1.496 × 1011m.
(Hint: you already know the period of the Earth’s orbit.)

3. The free-fall acceleration on the surface of the Moon is about one sixth of that on the surface
of the Earth. If the radius of the Moon is about 0.250RE , find the ratio of their average densities,
ρMoon/ρEarth.

4. In the figure below, two masses are connected to each other and vertical walls by three identical
springs. Presume m1 = m2 for simplicity. As it turns out, there are two stable frequencies of
oscillation of the system. Find one of them. Hint: there are two obvious ways the two masses can
move relative to each other. One of them is really simple.

Figure 1: From http: // en. wikipedia. org/ wiki/ Normal_ mode .

5. Energetics of diatomic systems. An expression for the potential energy of two neutral atoms as
a function of their separation x is given by the Morse potential,

U(x) = Uo
[
1 − e−a(x−xo)

]2
(1)

where xo is the equilibrium spacing. Calculate the force constant for small oscillations about r=ro.
Hint: At equilibrium, the net force is zero. For small δ, one may approximate eδ≈1+δ+ 1

2δ
2 + · · · .

http://en.wikipedia.org/wiki/Normal_mode


Numbers & units:
g = 9.81 m/s2 Me = 5.96× 1024 kg ← earth

Re = 6.37× 106 m ← earth G = 6.67× 1011 N m2/kg2
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