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1. Halliday, Resnick & Walker Problem 10.54

We can find the angular acceleration by finding the net torque and using the known moment of inertia:

∑
~τ = I~α or

∑
|~τ | = I|~α|

In order to find net torque, we need to sum the individual torques resulting from each of the four forces present.
Let the positive z axis (ẑ direction) be along the rotation axis out of the plane of the page (or down and to the left,
depending on your perspective), and define counter-clockwise rotations to be positive.

Forces ~F2 and ~F3 will try to cause clockwise rotations. This means the corresponding torques are along −ẑ, or
that the magnitude of their torques are negative. Force ~F1 will try to cause a counter-clockwise rotation, meaning
its corresponding torque is along ẑ and its magnitude is positive. Force ~F4 acts directly on the center of mass, and
will result in no torque.

Each individual torque is the vector product of force and the displacement between its application and the axis of
rotation. If we draw a vector ~ri from the axis of rotation to the point of application for force ~Fi, the magnitude
of the vector product between ~Fi and ~ri is simply Firi sin θi, where θi is the angle between ~Fi and ~ri. Given our
convention for positive rotation, force 1 this angle is 90◦, while for forces 2 and 3 the angle is 270◦. Force 4 has
θ4 =0. Adding the magnitudes of the individual torques,

∑
|~τ | =

∑
|~ri × ~Fi| = F1R− F2R− F3R + F4(0) = (F1 − F2) R− F3r

The moment of inertia for a solid disk is 1
2MR2. Using our first equation,

α =
∑

τ

I
=

(F1 − F2)R− F3r
1
2MR2

=
2 (F1 − F2)R− F3r

MR2
≈ 9.72 rad/s2

The angular acceleration is positive, consistent with a counter-clockwise rotation.

2. Halliday, Resnick & Walker Problem 10.67

Though it may not seem obvious at first, an energy-based approach is somewhat easier in this case. First things
first. When the chimney falls, any point along its length a distance r from the base will describe circular motion
with radius r. Therefore, all we need to consider is circular motion, albeit with a varying angular acceleration.

We already know the radial (normal; ar) and tangential (at) components of acceleration required for circular motion
in terms of the linear velocity v, angular velocity ω =dθ/dt=!v/r, angular acceleration α=d2θ/dt2, and distance
from the circle’s center:
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at =
d2s

dt2
= rα

ar =
v2

r
= rω2

Here s is the length of the path covered by a particular point throughout the motion. For circular motion at radius
r through an angle θ, this is just the arc length s=θr. We will need both α and ω to find at and ar. We can find ω

from conservation of energy, and differentiate it with respect to time to find α.

Let the chimney have length l, and define the ŷ direction to be vertical with the origin at the base of the chimney. If
the chimney falls through an angle θ relative to the vertical, its center of mass will have gone from a height y= l/2
to y =(l/2) cos θ. The change in the center of mass height ∆ycom gives a change in gravitational potential energy,
which must be equal to the gain in rotational kinetic energy. With I as the moment of inertia of the chimney,

mg∆ycom =
1
2
mgl (1− cos θ) =

1
2
Iω2

The moment of inertia of the chimney is that of a thin rod of length l and mass m rotating a distance l/2 from its
center of mass:

I = Icom + m

(
l

2

)2

=
1
12

ml2 +
1
4
ml2 =

1
3
ml2

Putting this all together, we can find ω2, which will give us ar.

ω2 =
mgl

I
(1− cos θ) =

3g

l
(1− cos θ)

We are interested in the accelerations at the very end of the chimney, which is thus rotating at a distance l from the
base of the rod. The radial acceleration is then

ar = rω2 = lω2 = 3g (1− cos θ) ≈ 5.32 m/s2

Since we know ω, we can straightforwardly find α and therefore at. It is somewhat easier to implicitly differentiate
ω2 as given above and apply the chain rule:

d
(
ω2
)

dt
= 2ω

dω

dt
= 2ωα =

3g

l
sin θ

dθ

dt
=

3gω

l
sin θ

2ωα =
3gω

l
sin θ

α =
3g

2l
sin θ

Given α, we can find at:

at = lα =
3g

2
sin θ ≈ 8.44 m/s2

Finally, we want to know the angle at which the tangential acceleration equals the gravitational acceleration at the
end of the chimney, at =g. No problem:
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at = g =
3g

2
sin θ θ = sin−1 2

3
≈ 42◦

At this point, the end of the chimney is “falling faster than free-fall.” At this point, it would be safer to jump off of
the chimney . . .

The text tells you not to use torques, so obviously we need to show you how to do the problem that way too. It
is really not that much harder in the end, and arguably just as straightforward. First: the only torque is due to
the weight of the chimney acting at a distance l/2 from the center of mass. The force is ~F=−mg ŷ, and a vector
pointing from the center of rotation to the point of its application is~r=(l/2) sin θ ı̂+(l/2) cos θ ̂. Or, if you like,
the angle between ~r and ~F is θ, |~r|= l/2, and |~F|= mg since we only need magnitudes. In any case: this torque
must give Iα:

Iα = τnet =~r× ~F = |~r||~F| sin θ = − l

2
mg sin θ

τnet = Iα

The torque is negative, consistent with its tending to cause a clockwise rotation of the chimney. Using the moment
of inertia derived above, you arrive at an expression for α identical to the one above. At this point, you still need
ω. You can find this by equating the work done by the torque τ acting through an angle θ to the increase in kinetic
energy:

W =

θf∫
θi

τ dθ =
1
2
Iω2

The integral is simple, and its limits are from the initial vertical configuration (0) to the final angle of interest (35◦).
You can verify that this yields the same expression for ω2 as above.

Two different approaches, same answer, as it has to be. It is sometimes just a matter of taste, memory, and mini-
mizing pain that determines which method to use. I used the torque-work method initially myself, and was a bit
confused as to why the book hinted against it.

3. Halliday, Resnick & Walker Problem 11.13

(a) Initially, the bowling ball is purely sliding, and as friction takes hold, the ball begins to roll. During the pure
sliding phase, the ball rotates about its center of mass, independent of the overall center of mass motion.
After sufficient time, the rolling motion “catches up” with the sliding motion, and the ball begins to roll - it is no
longer spinning about its center of mass, rolling smoothly. This smooth rolling is equivalent to a rotation about a
point on the surface of the ball (not the center of mass), and as we derived earlier, this means that at the point we
have smooth rolling motion, center of mass velocity and angular velocity are simply related:

vcom = rω = 0.11ω

Here r =0.11 m is the given radius of the ball. During the sliding phase, we should write vcom >rω. The angular
velocity is not high enough for the ball to “catch" on the lane. i

iMy parents used to own a bowling alley. I can go into much more detail on this problem for the curious.
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(b) During the sliding phase, rotation is irrelevant to the dynamics - it is just like any other sliding object we have
analyzed. A force of kinetic friction acts at the interface between the ball and the lane, which is equal in magnitude
to fk =µkFN , where µk is the coefficient of kinetic friction and FN =mg the normal force. Since this is the only
force acting, we can easily apply Newton’s law:

∑
F = ma = −fk

a = −fk/m = −µkg ≈ −2.1 m/s2

(c) The angular acceleration α during the sliding phase is also provided by the friction force fk. The friction force
acts at a distance r from the center of mass, and at a right angle to a radius drawn from the center of mass to the
intersection between the ball and lane. Thus, fk also provides a torque τ , and as the only torque present, it must
equal the moment of inertia of the ball times the angular acceleration. Noting I = 2

5mr2 for a solid sphere,

τnet = rfk = Iα =
2
5
mr2α

α =
rfk

2
5mr2

=
5µkmg

2mr
=

5µkg

2r
≈ 47 rad/s2

(d) During the sliding phase, the rotational and translational motion are essentially decoupled, and we can consider
the center of mass motion from the point of view of standard kinematics. That is,

vcom(t) = vcom(0) + at = vcom(0)− µkgt

Here vcom(0) is the initial center of mass velocity, and we imply t = 0 at the moment the ball hits the lane. The
same is true for the rotational motion, with the added simplification that the initial angular velocity is zero:

ω(t) = ω(0) + αt =
(

5µkg

2r

)
t

Say that the sliding stops at a time to. At the moment that sliding stops, we know that vcom(to) = rω(to). This
yields to, the time it takes to stop sliding, in terms of known quantities:

vcom(to) = rω(to)

vcom(0)− µkgto =
5
2
µkgto

to

(
5
2
µkg + µkg

)
= vcom(0)

to =
vcom(0)

7
2µkg

=
2vcom(0)

7µkg
≈ 1.18 s

(e) Given the time to stop sliding, we can also find the distance covered d by standard kinematics:
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d = vcom(0)to +
1
2
at2o

= vcom(0)
(

2vcom(0)
7µkg

)
− 1

2
µkg

(
2vcom(0)

7µkg

)2

=
2 [vcom(0)]2

7µkg
− 2 [vcom(0)]2

49µkg

=
12 [vcom(0)]2

49µkg
≈ 8.6 m

(f) The linear (i.e., center of mass) speed at the moment sliding stops is also just kinematics:

vcom(to) = vcom(0) + at = vcom(0)− µkgt ≈ 6.0 m/s

4. Halliday, Resnick & Walker Problem 13.13

This problem involves a stupid trick, but a very important one that illustrates nicely the power of superposition.
The basic idea is this: a solid sphere could be considered as the sum of one with a hole cut out of it, and another
piece of the same material the same size as the hole:

= +

Figure 1: Stupid tricks with superposition

The gravitational force of a solid sphere would be the same as that of our object plus a smaller one of the same
material (i.e., same density) of half the radius. That means our object is the same as the force of the full sphere
minus the force of the smaller sphere.

If the whole sphere of radius R has mass M , you can pretty easily show that the sphere of half the radius has mass
M/8. We can thus consider the force due to the object at hand on a mass m to be that of a whole sphere of mass
M a distance d away minus the force of a smaller sphere of mass M/8 a distance d−R/2 away. Thus,

Fnet =
GMm

d2
− GMm

8 (d−R/2)2
= GMm

(
1
d2
− 1

8 (d−R/2)2

)
≈ 8.31× 10−9 N

A very similar electric force problem is here:

http://faculty.mint.ua.edu/~pleclair/ph106/Homework/HW2_SOLN.pdf

5. Halliday, Resnick & Walker Problem 13.16

We can consider the rod as a superposition of many tiny point masses of length dx:
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O
L

x

dm = λdx

Figure 2: Stupid tricks with superposition, part II

If the rod is uniform, of length L and mass M , it has a linear density λ=M/L, and each bit dx has mass dm=λ dx.
The point mass m we which to find the force on is at a distance x=d from the left end of the rod in this scenario.
The force from one little bit dm at a distance x from our point mass m is then

dF =
Gm dm

x2
=

Gmλ dx

x2

The total force is found by adding the contributions from all possible dm, which means integrating dx from x=d

to x=d + L (i.e., over the length of the rod):

F =

d+L∫
d

Gmλ dx

x2
=
−Gmλ

x

∣∣∣∣d+L

L

=
−GmM

L

[
1

d + L
− 1

d

]
=

GMm

d (d + L)
≈ 3.0× 10−10 N

Here we reused the definition λ=M/L in the third step. Here’s a similar electric force problem to find the force
between 2 rods:

http://faculty.mint.ua.edu/~pleclair/ph106/Homework/HW1_SOLN.pdf

6. Halliday, Resnick & Walker Problem 13.23

We wish for a mass m on the surface to have its gravitational equal its mass times the centripetal acceleration
required for circular motion,

∑
F = 0 = Fg −mac

This means that the gravitational force pulling the mass to the surface is exactly providing the centripetal accel-
eration for circular motion, an the mass feels no net force - the condition for weightlessness on the surface. The
gravitational force is readily calculated. With ac = v2/R =mRω2, where R is the radius of the planet of mass M ,
and ω is angular velocity. The angular velocity ω is 1 rev/s, or 2π rad/s, thus

Fg =
GMm

R2
= mac = mRω2

M =
R3ω2

G
≈ 4.7× 1024 kg
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This is approximately 0.8 solar masses, though the rotational speed is outrageously large for a normal star.

7. Halliday, Resnick & Walker Problem 13.68

Let the height of the orbit be h, the mass of each craft m, with the earth’s mass and radius Me and Re.

(a) The period of the initial orbit To is readily found from Kepler’s law,

To =

√
4π2

GM
r3 ≈ 5540 s ≈ 92 min

(b) The orbital velocity is readily found from conservation of energy, and we have derived it already:

vo =
√

GM

Re + h
≈ 7680 m/s

(c) If the new orbital speed is 1% less than the old . . .

v = 0.99vo ≈ 7600 m/s

The new kinetic energy is thus

K =
1
2
mv2 = (0.99)2

(
1
2
mv2

o

)
≈ 5.77× 1010 J

(d) Immediately after the ‘burn,’ the orbital distance has not changed, and therefore neither has the potential energy:

U =
−GMem

Re + h
≈ −1.178× 1010 J

(e) The total energy is just K + U :

Etot = K + U ≈ −6.0× 1010 J

Note that the total energy is negative, meaning the orbit is bound.

(f) Given the total energy, and knowing the orbit is bound, the most general case is an elliptical orbit. We can relate
the total energy to the semi-major axis a of the ellipse, and solve for a

E =
−GMem

2a

a =
−Gmm

2E
≈ 6.65× 106 m

The height above the earth’s surface is of course a−Re.

(g) Originally, Picard was behind by 90 s. His new orbit will be shorter, with period T compared to the original
period To. That means he will gain To − T on the other ship toward making up the 90 s he was originally behind.
Thus, he’ll arrive at the same point after

t = To − T − 90 s
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The new period is readily found from Kepler’s law, as in part (a):

T =

√
4π2

GM
a3 ≈ 5390 s

Picard gains about 150 s with the new orbit, so if he was originally behind by 90 s, he is now ahead by t≈60 s.

8. Halliday, Resnick & Walker Problem 13.99

Lets do this one in a sneaky way, just for fun. We can start out with force, and it is not that hard, but we have to
deal with vectors. Instead, let’s find the potential energy first and get the force from that. Let the ring have mass
M and radius R, and our point mass m will be a distance x from the center of the ring.

Every bit of mass on the ring is a distance
√

R2 + x2 from our point mass. Since potential energy is a scalar, each bit
of the ring contributes the same potential energy, meaning the ring must be equivalent a single mass M a distance√

R2 + x2 away so far as potential energy is concerned. This is not true of the force, since force is a vector: each
bit of the ring contributes the same magnitude of force, but in a different direction. Anyway: the total potential
energy is the same as two masses M and m separated by d:

U(x) =
−GMm√
R2 + x2

When the mass is at the center of the ring, we have simply U(0)=−GMm/R. If the mass is released from rest at a
distance x from the center of the ring, conservation of energy yields the velocity:

−GMm

R
+

1
2
mv2 =

−GMm√
R2 + x2

v =

√
2GM

(
1
R
− 1√

R2 + x2

)

What about the force? In general, ~F = −∇U for a conservative force. In this case, the net force is only in the
horizontal direction, so way may simply write F =−dU/dx. Thus,

F = −dU

dx
= − d

dx

(
−GMm√
R2 + x2

)
= GMm

(
(2x)

(−1
2

)
(R2 + x2)3/2

)
=

−GMmx

(R2 + x2)3/2

It is easy enough to do the problem in the usual way - break the ring up into bits dm and integrate, and in fact the
integral is trivial in this case. In general, however, finding the potential first and then getting the force is a nice trick
for solving problems. Potential is a scalar, which makes it much easier than dealing with vector forces, and you
only have to differentiate to boot. This trick will show up a lot in PH126, where the problems can be otherwise
nearly intractable.

9. An object of mass m is dropped from a height h above the surface of a planet of mass M and radius R. Assume
the planet has no atmosphere so that friction can be ignored. Further assume the planet has no life that may be
harmed by subsequent portions of this problem.

(a) What is the speed of the mass just before it strikes the surface of the planet? Do not assume that h is small
compared with R.
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(b) Show that the expression from (a) reduces to v=
√

2gh for h�R.

(c) How long does it take for the object to fall to the surface for an arbitrary value of h? Use any means necessary
to evaluate the integral required. Bonus points (10%) for code submissions.
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