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Problem Set 11: Solutions

1. Halliday, Resnick & Walker Problem 15.26, two springs in series.

See http://scienceworld.wolfram.com/physics/SpringsTwoSpringsinSeries.html for a good solution
to this problem. With the numbers given, you should find

f =
1
2π

√
keq

m
=

1
2π

√
k1k2

(k1 + k2) m
≈ 18 Hz

2. Halliday, Resnick & Walker Problem 15.37: mass hanging from a spring.

Our mass starts out at position yi, corresponding to the un-stretched length of the spring. When released, its lowest
position is 2∆y =10 cm below yi during the subsequent oscillations. This means that the amplitude of the simple
harmonic motion is ∆y, symmetric about an equilibrium position yeq – both yi and the lowest point in the motion
are ∆y from yeq. For convenience, let the equilibrium position be our origin, yeq = 0, with the ̂ direction being
upward. With this choice, yi =∆y is the amplitude of harmonic motion. Make use of the figure below.

k

myi

∆y

∆y
yeq =0

(a) We can find the frequency of oscillation by considering the forces acting on the mass, which are only gravity
and the spring restoring force. If the mass moves a distance y from equilibrium,

ma = mg − ky

At the equilibrium position, the string is stretched by an amount ∆y compared to its natural length, and a=0:

mg = k∆y =⇒ k

m
=

g

∆y
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In principle, we can now must use f =(2π)−1
√

k/m to find the frequency of oscillation. However, should we be
concerned whether our solution to simple harmonic motion is valid in the presence of an additional constant force
(i.e., gravity)? Our force balance equation, suitably rearranged, reads

d2y

dt2
+

k

m
y − g = 0

Without the additional constant gravitational acceleration, we would have our equation for simple harmonic mo-
tion. A simple substitution will recover the usual equation for simple harmonic motion, for which we know the
solution. Let y′=y −mg/k, which gives d2y′/dt2 =d2y/dt2. Making the substitution in our equation above,

d2y′

dt2
+

k

m
y′ + g − g =

d2y′

dt2
+

k

m
y′ = 0

We have recovered the standard equation of motion for a simple harmonic oscillator, and thus the presence of
an additional constant force serves only to shift the origin by an amount mg/k. This shift leaves the frequency
of oscillation unchanged at f = (2π)−1

√
k/m. The substitution we made physically corresponds to shifting the

equilibrium position downward by an amount mg/k – exactly how far the mass pulls the spring down once it is
attached. This shift is just a choice of origin so far as the equations are concerned, the physics is unchanged. In the
end, we are justified in using our beloved equations of simple harmonic motion, so long as we choose our origin at
the new equilibrium position yi −mg/k, which we have already done!

With our now-justified solution the numbers given,

f =
1
2π

√
k

m
=

1
2π

√
g

∆y
≈ 2.2 Hz

Recall that units of s−1 are commonly called Hertz, abbreviated Hz.

(b) When the mass is 8 cm below its initial position, what is its speed? There are several ways to go about this.

Conservation of Energy: First, and perhaps most straightforwardly, we can use conservation of mechanical energy.
Let the position of interest at 8 cm be yf . At the starting position of the mass, yi, we have only the gravitational
potential energy of the mass, since the mass is at rest and the spring is un-stretched. At position yf , the mechanical
energy consists of three parts: the new gravitational potential energy, the kinetic energy of the mass, and the
potential energy of the now stretched spring. For the latter term, it is key to remember that the spring has been
stretched by an amount yi−yf , since it started at its un-stretched length at yi.i Writing down all the requisite energy
terms, it is no big trick to solve for v

mgyI = mgyf +
1
2
mv2 +

1
2
k (yi − yf )2

1
2
mv2 = mg (yi − yf )− 1

2
k (yi − yf )2

v2 = 2g (yi − yf )− k

m
(yi − yf )2

(
note

k

m
=

g

∆y

)
v =

√
2g (yi − yf ) +

g

∆y
(yi − yf )2

iBe careful that in the present case the equilibrium position is not the un-stretched position, and therefore not the position of zero spring
potential energy.
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Noting that we are told yi − yf =8 cm and ∆y=5 cm (and converting everything to meters),

v = ±0.56 m/s

The ± in this case is physically meaningful – at 8 cm below the starting position, the mass can be going either
upward or downward with the same speed.

Equation of Motion: Since we have established that our hanging mass follows simple harmonic motion, we know
the general solution for y(t):

y(t) = A cos ωt + B sinωt

From y(t), we can readily find v = dy/dt, we need only find the time at which y(t) corresponds to the given
position. If the mass starts at rest at yi, our boundary conditions are y(0)=0 and v(0)=0. Our general solution
then becomes

y(t) = yi cos ωt

in order to be consistent with our boundary conditions. At what time does y(t) correspond to the point of interest?
The mass starts out at yi =5 cm above equilibrium. That means that the position of interest, 8 cm below yi, is then
3 cm below equilibrium. Thus, we are interested in the time to such that y(to)=−3 ≡ yf (since ̂ is upward).

yf = yi cos ωto

to =
1
ω

cos−1

[
yf

yi

]

The velocity is now easily found:

v(t) =
dy

dt
= −ωyi sinωt

v(to) = −ωyi sin
[
cos−1

(
yf

yi

)]
= −ωyi

√
1−

(
yf

yi

)2

= −ω
√

y2
i − y2

f

= −2πf
√

y2
i − y2

f ≈ 0.56 m/s

Note that we used the identity sin
[
cos−1 x

]
=
√

1− x2 here. Also note that this is simply the equation of an
ellipse, which leads us to our next method . . .

Phase space relationships: As we discussed in class, for the general simple harmonic motion solution

y(t) = C cos (ωt + δ)

The allowed values of position y and momentum p for our oscillator satisfy the equation of an ellipse:

y2

C2
+

p2

m2ω2C2
= 1
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That is, position and momentum are conjugate variables, and their values are linked. Since we know the position
of interest y, there are at most two possible momenta, which will differ only by a sign. Noting that in the present
case our boundary conditions give C =yi, and using p=mv

1− y2

y2
i

=
m2v2

m2ω2y2
i

=
v2

ω2y2
i

v2 = ω2y2
i

(
1− y2

y2
i

)
= ω2

(
y2

i − y2
f

)
v = ±ω

√
y2

i − y2
f = ±2πf

√
y2

i − y2
f

Precisely the same solution, quite a bit faster.

(c) We are told that the addition of a 0.3 kg mass halves the frequency of oscillation. If the original mass is m1, and
the new mass is m2 =0.3 kg, the original frequency is

fo =
√

k

m1

The new frequency is determined by the total mass, now m1 + m2:

f =
1
2
fo =

√
k

m1 + m2

Combining, and solving for m1,

1
2
fo =

1
2

√
k

m1
=

√
k

m1 + m2

k

4m1
=

k

m1 + m2

k (m1 + m2) = 4km1

3m1 = m2 =⇒ m1 =0.1 kg

(d) The new equilibrium position is found just like the original equilibrium position: the total weight balances the
spring’s restoring force. Let the new equilibrium position be a distance y′eq below the original equilibrium:

ky′eq = (m1 + m2) g

y′eq =
g

k
(m1 + m2) =

g∆y

m1g
(m1 + m2)

(
note k =

m1g

∆y

)
=

(
m1 + m2

m1

)
∆y = 4∆y (note 3m1 = m2)

≈ 0.2 m

3. Halliday, Resnick & Walker Problem 15.55

In the end, we only have a physical pendulum, and the period is given by
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T = 2π

√
I

mgh

where I is the moment of inertia of the rod (of mass m) about the pivot point, and h is the distance between the
rod’s center of mass and the pivot point. Let the pivot be a distance x from the end of the rod, making it a distance
l/2−x from the center of mass. The moment of inertia is then

I = Icom + m

(
l

2
− x

)2

=
1
12

ml2 + m

(
l

2
− x

)2

The distance between the center of mass and the pivot is h= l/2−x, so

I =
1
12

ml2 + mh2

The period is thus

T = 2π

√
1
12 l2 + h2

gh
= 2π

√
l2

12gh
+

h

g

We wish to find x such that T is a maximum, which means dT/dx=0. Noting that dT/dx=−dT/dh,

dT

dx
= −dT

dh
= 0

d

dh

2π

√
1
12 l2 + h2

gh

 = 0

2π

(
1
2

) (
−l2

12gh2
+

1
g

) ( 1
12 l2 + h2

gh

)−1/2

= 0

=⇒ −l2

12gh2
+

1
g

= 0

12h2 = l2

h =
l

2
√

3
≈ 0.29l

A quick second derivative test or a plot of dT/dh verifies that this is indeed a minimum, not a maximum. The
minimum period is therefore

Tmin = T

∣∣∣∣
h= l

2
√

3

= 2π

√√√√ 1
12 l2 + 1

12 l2

g l
2
√

3

= 2π

√
l√
3g
≈ 2.26 s

(b) Given T ∝
√

l, the period increases as l increases.

(c) The period is independent of m, and remains unchanged as m increases.

4. Halliday, Resnick & Walker Problem 15.63
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Resonance - maximum amplitude of oscillation in this case - will occur when the frequency at which the car hits
successive bumps in the washboard. After hitting a bump, the car will bounce up, come back down, and reach a
minimum position. If the next bump comes at exactly the moment at which the car is at its minimum vertical
position, the ’push’ from the next bump will be maximally efficient, leading to the largest amplitude of vibration.

If the distance between bumps is d, the time between bumps traveling at constant speed vo is

To =
d

vo

For resonance to occur, this time interval must be the same as the period of simple harmonic motion. If the total
mass of the car and passengers is mtot and the shocks have an effective spring constant k,

To = 2π

√
mtot

k
=

d

vo

k =
4π2mtotv

2
o

d2

The total mass of the car plus four passengers is mtot =mcar + 4mp. If the four passengers get out, the difference in
the distance the spring is compressed ∆x must be related to the weight of the four passengers:

k∆x = 4mpg

That is, if the change in weight is 4mpg, there must be an equivalent change in the spring’s restoring force to reach
a new equilibrium. Solving for ∆x and substituting our expression for k,

∆x =
4mpg

k
=

4mpgd2

4π2mtotv2
o

=
mpgd2

π2 (mc + 4mp) v2
o

≈ 5.0 cm

5. Halliday, Resnick & Walker Problem 15.106

The mechanical energy in this case consists of rotational kinetic energy, translational kinetic energy, and potential
energy stored in the spring. Let x = 0 correspond to the un-stretched length of the spring, which is also the
equilibrium position of this system. The total mechanical energy is

Etot = K + U = Kt + Kr + Us =
1
2
mv2 +

1
2
Iω2 +

1
2
kx2

Before we proceed, one aside: if a circular object is rolling smoothly, the frictional force plays no roll - essentially,
at each instant in time it is a different bit of the circular surface contacting the ground. Friction only imparts a
retarding force and dissipates energy from the system when there is sliding involved. See http://webphysics.
davidson.edu/faculty/dmb/py430/friction/rolling.html for a good explanation. Basically, pure rolling
involves no work done by friction, so we are justified in writing the total energy as we have above.

In the case of pure rolling, we can relate the linear velocity of the center of mass v and the angular velocity ω

through the radius of the cylinder, v=rω. Substituting for ω above, and noting I =kmr2 in general (with k=1/2
in the present case)
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Etot =
1
2
mv2 +

1
2
Iω2 +

1
2
kx2

=
1
2
mv2 +

1
2

(
kmr2

) (v

r

)2

+
1
2
kx2

=
(

k + 1
2

)
mv2 +

1
2
kx2

= (k + 1)Kt +
1
2
kx2

We are told the maximum displacement is xmax = 1
4 m. At maximum displacement, both kinetic terms are zero,

and the energy is purely potential:

1
2
kx2

max = Etot =
3
32

J

On the other hand, at the equilibrium position, the energy is entirely kinetic. Since the only relevant forces are
conservative (having established friction plays no role), mechanical energy is conserved, at equilibrium

Kr + Kt = (k + 1) Kt = Etot

(
k =

1
2

)
=⇒ Kt =

Etot

k + 1
=

1
16

J

Kr = Etot −Kt =
1
32

J

In order to find the period of motion, we would like to find a=d2x/dt2 and show that it is proportional to posi-
tion, a=−ω2x. We could write down a force and torque balance and arrive at the solution without an inordinate
amount of work. However, there is an easier way.

We can also find the period by noting that dE/dT = 0, since mechanical energy is conserved. Taking the time
derivative of the total energy will give us factors of acceleration and position; if we are lucky, that is all.

dEtot

dt
=

d

dt

[(
k + 1

2

)
mv2 +

1
2
kx2

]
= 0

0 =
(

k + 1
2

)
m (2v)

(
dv

dt

)
+

1
2
k (2x)

(
dx

dt

)
0 = (k + 1)mva + kxv

0 = (k + 1) ma + kx (v 6= 0)

a = − k

m (k + 1)
≡ −ω2x

This is just the usual equation for simple harmonic motion, for which we know the solution

ω =

√
k

m (k + 1)

T =
2π

ω
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Using k=1/2,

ω =

√
2k

3m

T = 2π

√
3m

2k

The division by v above means that this solution is not valid at the turning points, where v=0, which is not really
a restriction at all.
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