Problem Set I: Solutions I

Problems due 13 January 2009

I. Water is poured into a container that has a leak. The mass m of the water is as a function of time t is

$$
m=5.00 t^{0.8}-3.00 t+20.00
$$

with $t \geq 0, m$ in grams, and t in seconds. At what time is the water mass greatest?

Given: Water mass versus time $m(t)$.
Find: The time t at which the water mass m is greatest. This can be accomplished by finding the time derivative of $m(t)$ and setting it equal to zero, followed by checking the second derivative to be sure we have found a maximum.

Sketch: It is useful to plot the function $m(t)$ and graphically estimate about where the maximum should be, roughly ${ }^{\text {i] }}$

Figure I: Water mass versus time, problem I. Note the rather expanded vertical axis, with offset origin.
It is clear that there is indeed a maximum water mass, and it occurs just after $t=4 \mathrm{~s}$.

[^0] graphit/.

Relevant equations: We need to find the maximum of $m(t)$. Therefore, we need to set the first derivative equal to zero. We must also check that the second derivative is negative to ensure that we have found a maximum, not a minimum. Therefore, only two equations are needed:

$$
\frac{d m}{d t}=\frac{d}{d t}[m(t)]=0 \quad \text { and } \quad \frac{d^{2} m}{d t^{2}}=\frac{d^{2}}{d t^{2}}[m(t)]<0 \quad \Longrightarrow \quad \text { maximum in } m(t)
$$

Symbolic solution:

$$
\begin{aligned}
\frac{d m}{d t} & =\frac{d}{d t}\left[5 t^{0.8}-3 t+20\right]=0.8\left(5 t^{0.8-1}\right)-3=4 t^{-0.2}-3=0 \\
4 t^{-0.2}-3 & =0 \\
t^{-0.2} & =\frac{3}{4} \\
\Longrightarrow t & =\left(\frac{3}{4}\right)^{-5}=\left(\frac{4}{3}\right)^{5}
\end{aligned}
$$

Thus, $m(t)$ takes on an extreme value at $t=(4 / 3)^{5}$. We did not prove whether it is a maximum or a minimum however! This is important ... so we should apply the second derivative test.

Recall briefly that after finding the extreme point of a function $f(x)$ via $d f /\left.d x\right|_{x=a}=0$, one should calculate $d^{2} f /\left.d x^{2}\right|_{x=a}$: if $d^{2} f /\left.d x^{2}\right|_{x=a}<0$, you have a maximum, if $d^{2} f /\left.d x^{2}\right|_{x=a}>0$ you have a minimum, and if $d^{2} f /\left.d x^{2}\right|_{x=a}=0$, the test basically wasted your time. Anyway:

$$
\begin{aligned}
& \frac{d^{2} m}{d t^{2}}=\frac{d}{d t}\left[\frac{d m}{d t}\right]=\frac{d}{d t}\left[4 t^{-0.2}-3\right]=-0.2\left(4 t^{-0.2-1}\right)=-0.8 t^{-1.2} \\
& \frac{d^{2} m}{d t^{2}}<0 \quad \forall \quad t>0
\end{aligned}
$$

$\frac{d^{2} m}{d t^{2}}$ is greater than zerdii $t>0$, since $t^{-1.2}$ is always positive in that regime, which means we have indeed found a maximum.

Numeric solution: Evaluating our answer numerically, remembering that t has units of seconds (s):

$$
t=\left(\frac{4}{3}\right)^{5} \approx 4.21399 \xrightarrow[\text { digits }]{\text { sign. }} 4.21 \mathrm{~s}
$$

The problem as stated has only three significant digits, so we round the final answer appropriately.
Double check: From the plot above, we can already graphically estimate that the maximum is somewhere around $4 \frac{1}{4} \mathrm{~s}$, which is consistent with our numerical solution to 2 significant figures. The dimensions of our answer are given in the problem, so we know that t is in seconds. Since we solved $d m / d t(t)$ for t, the units must be the same as those given, with t still in seconds - our units are correct.
2. Antarctica is roughly semicircular, with a radius of 2000 km . The average thickness of its ice cover is 3000 m . How many cubic centimeters of ice does Antarctica contain? (Ignore the curvature of the earth.)

[^1]Given: Assumption that Antarctica is a semicircular slab, dimensions of said slab and thickness of overlying ice cover.

Find: The number of cubic centimeters of ice. Cubic centimeters are units of volume, so what we are really asked for is the volume of ice.

Sketch: We assume that the ice sheet covers the entire continent, such that the ice sheet itself has a semicircular area, as shown below in Fig. 22. As given, we neglect the curvature of the earth, and assume a flat ice sheet. We will also assume a completely uniform covering of ice, equal to the average ice cover thickness.

Figure 2: (a) Proposed model for the Antarctic ice sheet: a semicircular sheet of radius r and thickness t. (b) The semicircular sheet is just half of a cylinder of radius r and thickness t. Thus, the volume of the semicircular sheet is just half the volume of the corresponding cylinder.

Relevant equations:

Let our semicircular sheet have a radius r and thickness t. As shown in Fig. 2, the semicircular sheet is just half of a cylinder of radius r and thickness t. Thus, the volume of the semicircular sheet is just half the volume of the corresponding cylinder. The volume of a cylinder of radius r and thickness t is the area of the circular base (A) times the thickness:

$$
V_{\mathrm{cyl} .}=A_{\text {ice }} t=\pi r^{2} t
$$

Symbolic solution:

Our ice sheet has half the volume of the corresponding cylinder, thus

$$
V_{\text {ice }}=\frac{1}{2} \pi r^{2} t
$$

Numeric solution: We are given a radius $r=2000 \mathrm{~km}$ and thickness $t=3000 \mathrm{~m}$. We require the volume in cm^{3}. It will be easiest (arguably) to first convert all individual dimensions to cm before inserting them into our equation.

$$
\begin{aligned}
& r=2000 \mathrm{~km}=\left(2 \times 10^{3} \mathrm{~km}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}\right)=2 \times 10^{8}(\mathrm{~km})\left(\frac{\not \mathrm{KI}}{\mathrm{~km}}\right)\left(\frac{\mathrm{cm}}{\not \mathrm{MK}}\right)=2 \times 10^{8} \mathrm{~cm} \\
& t=3000 \mathrm{~m}=\left(3 \times 10^{3} \mathrm{~m}\right)\left(\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}\right)=3 \times 10^{5}(\text { ભr) })\left(\frac{\mathrm{cm}}{\not \mathrm{~K}}\right)=3 \times 10^{5} \mathrm{~cm}
\end{aligned}
$$

Now we can use these values in our equation for volume:

$$
\begin{aligned}
& V_{\text {ice }}=\frac{1}{2} \pi r^{2} t \approx \frac{1}{2}(3.14)\left(2 \times 10^{8} \mathrm{~cm}\right)^{2}\left(3 \times 10^{5} \mathrm{~cm}\right)=1.57\left(4 \times 10^{16}\right)\left(3 \times 10^{5}\right) \mathrm{cm}^{3} \\
& V_{\text {ice }}=18.84 \times 10^{21} \mathrm{~cm}^{3}=1.884 \times 10^{22} \mathrm{~cm}^{3} \frac{\text { sign. }}{\text { digits }} 2 \times 10^{22} \mathrm{~cm}^{3}
\end{aligned}
$$

The problem as stated has only one significant digit, so we round the final answer appropriately. This is of course a very crude model, and it would be silly to claim anything more than order-of-magnitude accuracy anyway.

Double check: Our answer should have units of cubic centimeters, we can verify that our formula gives the correct units by dimensional analysis. Let r and t be given in cm . Then

$$
\begin{aligned}
V_{\text {ice }} & =\frac{1}{2} \pi r^{2} t \\
{\left[V_{\text {ice }}\right] } & =[\mathrm{cm}]^{2}[\mathrm{~cm}]=\mathrm{cm}^{3}
\end{aligned}
$$

As required, our formula does give the correct units for the volume of ice.
We can also simply look up the area of Antarctica: according to http://en.wikipedia.org/wiki/ Antarctic it is about $1.4 \times 10^{7} \mathrm{~km}^{2}$. Converting this to cm^{2} :

$$
1.4 \times 10^{7} \mathrm{~km}^{2}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}\left(\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}\right)^{2}=1.4 \times 10^{7} \mathrm{~km}^{2}\left(\frac{10^{6} \mathrm{~m}^{2}}{1 \mathrm{~km}^{2}}\right)\left(\frac{10^{4} \mathrm{~cm}^{2}}{1 \mathrm{~m}^{2}}\right)=1.4 \times 10^{17} \mathrm{~cm}^{2}
$$

The volume of the ice sheet is still area times average thickness, or

$$
V_{\text {ice }}=A_{\text {ice }} t_{\text {ice }}=\left(1.4 \times 10^{17} \mathrm{~cm}^{2}\right)\left(3 \times 10^{5} \mathrm{~cm}\right) \approx 4.2 \times 10^{22} \mathrm{~cm}^{3} \xrightarrow[\text { digits }]{\text { sig. }} 4 \times 10^{22} \mathrm{~cm}^{3}
$$

Using the actual area of Antarctica and the average ice sheet thickness, our answer is within a factor two.

Finally: we can check against a known estimate of the ice sheet volume. According to http:// en.wikipedia.org/wiki/Antarctic_ice_sheet, the actual volume is close to $30 \times 10^{6} \mathrm{~km}^{3}$, or $3 \times 10^{22} \mathrm{~cm}^{3}$. Our estimate is within 50%; not bad for a model which is clearly only meant as a crude order-of-magnitude estimate. Modeling Antarctica as a half cylinder is perhaps not so silly.

[^0]: ${ }^{\mathrm{i}}$ It is relatively easy to do this on a graphing calculator, which can be found online these days: http://www.coolmath.com/

[^1]: ${ }^{\text {ii }}$ You can read the symbol \forall above as "for all." Thus, $\forall t>0$ is read as "for all t greater than zero."

