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Problem Set 3: Solutions

The following problems are due 27 January 2009 at the beginning of class.

1. A person standing at the top of a hemispherical rock of radius R kicks a ball (initially at rest on the
top of the rock) to give it horizontal velocity ~vi.

(a) What must be its minimum initial speed if the ball is never to hit the rock after it is kicked?
(b) With this initial speed, how far from the base of the rock does the ball hit the ground?

Find: The minimum speed for the ball not to hit the rock, and the net horizontal distance at that
speed. Since the rock may be described by a circle, and the ball’s motion a parabola, we are seeking a
condition on the initial velocity such that the parabola always lies above the circle.

Given: The geometry of the rock, the ball’s initial velocity.

Sketch: Let the x axis run horizontally and the y axis vertically, with the origin at the rock’s center.
This makes the ball’s starting position (0, R) and its launch angle with respect to the x axis θ=0.
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Figure 1: A ball is kicked off the top of a rock by an unseen person.

Relevant equations: We need the equation of a circle of radius R centered on the origin, and the
trajectory of a projectile fired at angle θ = 0 relative to the x axis with starting vertical position
y(0)=R. Let the circle be described by yp(x) and the rock yr(x). Since our solution is restricted to
the upper right quadrant, the rock may be described by

yr(x) =
√

R2 − x2 (1)

The ball’s trajectory is our well-known result

yp(x) = y(0) + (tan θ)x− gx2

2|~v|2 cos2 θ
= R− gx2

2|~v|2
(2)

Symbolic solution: The condition that the ball does not hit the rock is simply that the parabola and
circle above have no intersection point, other than the trivial one at (0, R). That is, the parabola must
lie above the circle everywhere except (0, R). Thus,



yp(x) ≥ yr(x)

R− gx2

2|~v|2
≥

√
R2 − x2 (3)

In principle, this is it. Much algebra now ensues. First, simply square both sides and simplify. Since
both sides must be positive for all x considered, by the problem’s construction, this does not alter the
inequality. (
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)2
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(√
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)2
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|~v|2
+

g2x4
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)
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)
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(
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|~v|2
≥ 0

g

4|~v|2
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(
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|~v|2
− 1

)
(4)

We require this inequality to be true for all x > 0 for the ball not to hit the rock anywhere in the
domain of interest. The only way this can happen is if the right-hand side is negative:

gR

|~v|2
− 1 ≤ 0

=⇒ |~v| ≥
√

gR (5)

Note that this is not the same condition you would find by simply requiring the particle’s range to
be larger than R. It is easy to verify that one can make a parabola with horizontal range R in this
situation that still intersects the circle . . . try it out!

Where does the projectile land? Clearly, at yp =0, since that is where the ground is. We simply need
to set the ball’s y position equal to zero, and solve for the resulting x value using our minimal velocity
from Eq. 5. This is where the ball lands.

yp = 0 = R− gx2

2|~v|2
= R− gx2

2gR
= R− x2

2R

2R2 = x2

=⇒ x = R
√

2 (6)

We are asked how far from the rock the ball lands. Since the rock extends to x = R, we have gone
beyond that by a distance

distance from rock = R
(√

2− 1
)

(7)



Numeric solution: Numbers? How awkward.
√

2≈1.41,
√

2− 1≈0.41. The ball lands about 40%
of the rock’s radius beyond its base. With g≈10, and√g≈3.2, the maximal velocity is about 3.2

√
R.

Double check: Things you can do: simply graph the two trajectories you came up with for a given
value of R, and verify they do not intersect. Check the units of the final answer. Check that the ball
lands beyond the base of the rock (it does).

Another way: Since the parabola has a maximal radius of curvature at at its apex, with a little ge-
ometrical reasoning you can prove that if the circle and parabola are tangent at the parabola’s apex,
and the parabola’s radius of curvature there exceeds R, the two curves cannot intersect. It does work:
calculate the parabola’s radius of curvature, insist that it be larger than R, and the same condition
results: v≥

√
gR. I don’t really have the stamina to work up a full geometric proof of that, however

. . . perhaps one of you would do it for extra credit?

2. The air resistance experienced by an object in free fall can be modeled as an additional force opposite
the direction of motion proportional to velocity squared:i

~Fdrag = −1
2
DρA|~v|~v

where D is an empirical constant, ρ the density of air, A the cross sectional area of the falling body, and v

its velocity. For an object in free-fall, this drag force counteracts the gravitational force Fg =mg. Find an
expression for the terminal velocity of a falling body, assuming the object is traveling straight downward.

Find: The terminal velocity of a body which experiences a gravitational and drag force. Terminal ve-
locity means that the velocity is constant, which means zero acceleration, which means no net force.

Given: An equation for drag force in terms of a body’s speed, cross-sectional area, and numerical
constants. Technically, the area should be the orthographic projection of the body, or the area pro-
jected on a plane perpendicular to the direction of motion. Since this is an approximate law, with
fudge-factor D already included . . . we get the feeling it is not worth squabbling over.

Sketch: Watch the end of Point Break,ii you should get the gist of it.

Relevant equations: We are given the equation for drag force and gravitational force. We need
additionally only Newton’s second law:∑

~F = m~a (8)

Symbolic solution: The gravitational force clearly acts in the same direction as the velocity, since it
causes the free fall velocity in the first place. The drag force acts in the opposite direction, by the
definition given. At constant terminal velocity vt, acceleration must be zero and so must the force
balance. Since we have only two forces acting in opposite directions, their magnitudes must be equal:

iSee http://en.wikipedia.org/wiki/Drag_(physics), which actually has a solution to this very problem.
iihttp://www.imdb.com/title/tt0102685/

http://en.wikipedia.org/wiki/Drag_(physics)
http://www.imdb.com/title/tt0102685/


∑
~F = ~Fg − ~Fdrag = 0

=⇒ |~Fg| = |~Fdrag| (9)

mg =
∣∣∣∣12DρA|~v|~v

∣∣∣∣ =
1
2
DρA|~v|2

=⇒ |~v| =
√

2mg

DρA
(10)

Numeric solution: n/a

Double check: What is sensible? The more cross-sectional area a body has, the slower it is at terminal
velocity. Conversely, smaller cross-sectional areas provide higher terminal velocities, which is how
Keanu Reeves managed to catch Patrick Swayze in mid-air at the end of Point Break. This effect
should also be enhanced when falling through denser air (larger ρ). Both effects are borne out by our
equation above.

3. A ball is dropped from a window 10 m above the ground at t=0. When it bounces, its rebound speed
is 71% of its impact speed. At t=2 s, a second ball is released from the same place. Take g=10 m/s2.

(a) Give an expression for the position of the first ball y1(t), that is valid after it has bounced once.
(b) When will the two balls collide? After how many total bounces?

Given: The height at which two balls are dropped, the time interval between dropping them, and the
relative rebound speed of the first ball.

Find: The time at which the two balls hit each other, and after how many bounces this occurs.

“Sketch:” We need only one dimension, since this is free fall motion along a straight line. Let this
one dimension be an x axis running vertically, with +x in the upward direction. Let the origin be at
the ground level, making the initial height of both balls xo = 10 m. The first ball is dropped at t = 0
and bounces the first time at tb, while the second ball is released at time t = t2. After the first ball
bounces, its rebound velocity is a factor α=0.71 smaller than just before it bounces.

Relevant equations: We need only the one-dimensional equation of motion with constant accelera-
tion a:

x(t) = x0 + vixt +
1
2
at2 (11)

Symbolic solution: Worry about the first ball first. It leaves at time t=0, with vix =0 and xo =10 m.
Its motion, up until it hits the ground, is described by:

x1,1 = xo −
1
2
gt2 (12)

Here the subscript “1,1” means the first ball, first bounce. The first bounce occurs at time tb when
x=0:

0 = xo −
1
2
gt2b =⇒ tb =

√
2xo

g
(13)



At the moment it strikes the ground, the first ball’s velocity is

v1,1 =
dx1,1

dt

∣∣∣∣
tb

= −gtb = −
√

2xog (14)

At the moment it rebounds, the first ball has a new velocity v1,2 which is a factor α less than its
velocity just before the rebound (viz., v1,1):

v1,2 = α|v1,1| = α
√

2xog (15)

Given this velocity and the fact that the first ball now starts from x = 0, we can immediately write
down the equation of motion for the first ball between the first and second bounces. However: we
have to now take into account the fact that the time coming into the equation of motion has to be
the time after the first bounce, not just “t" which is the time since the beginning of the problem. This
means that instead of t in our equation, we need t− tb – whatever the time is, we have to subtract off
the first tb seconds that happened before the bounce.

x1,2(t) = v1,2 (t− tb)−
1
2
g (t− tb)

2 (16)

How do you know to put a “+” or “-”? The easiest way is to check your boundary conditions – at
time tb, we must have x1,2 = 0, that is the simplest way. The second bounce for the first ball occurs
when we set this equation to zero:

0 = v1,2 [t− tb]−
1
2
g [t− tb]

2 (17)

Before you go any further, let ∆t= t− tb.

0 = v1,2∆t− 1
2
g (∆t)2

0 = ∆t

(
v1,2 −

1
2
g∆t

)
(18)

=⇒ ∆t =
2v1,2

g
= t− tb (19)

t = tb +
2v1,2

g
= tb +

2α|v1,1|
g

= tb +
2α
√

2xo√
g

= tb + 2αtb = (1 + 2α) tb (20)

So long as the second ball reaches the ground before this time, but after tb the balls must hit between
the first and second bounces of the first ball. Let us see how that works out.

Now, what about the second ball? It is released at a time t2, so its position is described by

x2,1(t) = xo −
1
2
g (t− t2)

2 (21)

Just like before, we have to subtract off the t2 seconds of delay to account for when we started our
“clock” at t = 0. Again, you can check x2,1(t2) = 0 to be sure you have it the right way. The time it
takes to bounce the first time is precisely the same as the first ball, so it happens at a time

t = tb + t2 for first bounce of second ball (22)

This is the latest possible time the two balls can collide, if you think about it . . . Our condition that
the two balls should collide between the first and second bounce of the first ball would then read



(1 + 2α) tb ≥ tb + t2 (23)
2αtb ≥ t2 (24)

If this is satisfied, we know the balls hit between the first and second bounce of the first ball. Checking
with the numbers given, we find that the inequality is essentially exact. That is, we should find that
the two balls hit the ground together, as the first ball bounces a second time, and the second bounces
a first time.

To prove this, we simply have to set the equation of motion for the first ball after its first bounce equal
to that of the second ball and solve for t. Provided that we find x>0 for either ball at that time, our
solution is valid.

x2,1(t) = xo −
1
2
g (t− t2)

2 = x1,2(t) = v1,2 (t− tb)−
1
2
g (t− tb)

2

xo −
1
2
gt2 + gt2t−

1
2
gt22 = v1,2t− v1,2tb −

1
2
gt2 + gtbt−

1
2
gt2b (25)

xo + gt2t−
1
2
gt22 = v1,2t− v1,2tb + gtbt−

1
2
gt2b (26)

(v1,2 − gt2 + gtb) t = xo + v1,2tb −
1
2
gt22 +

1
2
gt2b (27)

t =
xo + v1,2tb +

1
2
g

(
t2b − t22

)
v1,2 + g (tb − t2)

(28)

It is useful to notice at this point that 1
2gt2b =xo, v1,2tb =2αxo, and gtb =

√
2xog to put our expression

in terms of known quantities.

t =
xo + 2αxo + xo −

1
2
gt22

v1,2 + g (tb − t2)
=

(1 + α) t2b −
1
2
t22

(1 + α) tb − t2
(29)

You need not be as obsessive as I am with reducing formulas, but the result is much nicer than it has
any right to be.

Numeric solution: With the number given, we find the collision at t≈ 3.4 s, just at the end of the
second bounce for the first ball.

Double check: The units are correct everywhere. You can verify that the collision time is indeed
when the first ball bounces the second time, at (1 + 2α) tb ≈ 3.4 s, and the position of both balls is
x≈0.

The following problems are due 29 January 2009 at the beginning of class.

4. Exam review: A block of mass m is released from rest at h above the surface of a table, at the top of
an incline of inclination θ, as shown below. The frictionless incline is fixed on a table of height H .

(a) Determine the acceleration of the block as it slides down the incline.
(b) What is the velocity of the block as it leaves the incline?
(c) How far from the table will the block hit the floor?
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Figure 2: A block is let go from the top of a ramp sitting on a table.

5. Problem 6.55 from your textbook.

6. Problem 6.59 from your textbook.

The following three problems are due 30 January 2009 by the end of the day.

7. Problem 6.34 from your textbook.

8. Problem 6.60 from your textbook.

9. A mass m is released from rest at height h on the top of a ramp of inclination θ. The coefficient of
kinetic friction between the ramp and mass is µk. The block slides down the ramp, up a second identical
ramp, back down again, and so forth.
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Figure 3: A block is let go from the top of a ramp sitting on a table.

(a) After one round trip (from the top of the first ramp and back again), how far away from the mass
from its starting point?

(b) How about after n round trips?
(c) Does the mass ever stop?


