
UNIVERSITY OF ALABAMA

Department of Physics and Astronomy

PH 125 / LeClair Spring 2009

Problem Set 5 Solutions

1. Problem 7.51 from your textbook

(a) We are given the initial and final position vectors ~di and ~df of an object acted upon by a force ~F.
In this case, the force is constant, so work is simply calculated from the scalar product of the force and
displacement:

W = ~F ·∆~d

The displacement is just the difference between initial and final position vectors:

∆~d = ~df − ~di

Since the scalar product is distributive,

W = ~F ·∆~d = ~F ·
(
~df − ~di

)
= ~F · ~df − ~F · ~di

With the vectors given,

W =
(
3 ı̂ + 7 ̂ + 7 k̂

)
·
(
−5 ı̂ + 4 ̂ + 7 k̂

)
N ·m−

(
3 ı̂ + 7 ̂ + 7 k̂

)
·
(
3 ı̂− 2 ̂ + 5 k̂

)
N ·m

= −15 + 28 + 49− (9− 14 + 35) J = 62− 30 J = 32 J

(b) Given the work done and the elapsed time ∆t, power is readily calculated:

P =
W

∆t
=

32 J
4 s

= 8 W

There is, of course, another way:

P = ~F ·~v = ~F · ∆~d
∆t

=
1

∆t
~F ·∆~d

You should be able to verify that this gives the same result.
(c) The angle θ between initial and final distances is most easily found from the scalar product:

~df · ~di = |~df ||~di| cos θ

Rearranging,

θ = cos−1

[
~df · ~di

|~df ||~di|

]
= cos−1

[
−15− 8 + 35√

25 + 16 + 49
√

9 + 4 + 25

]
≈ 78◦

2. Problem 8.27 from your textbook

1

(a) Since the stone is stationary, it has zero net force. The only force present are the object’s weight
and the spring force. Take +y as upward, and let ∆y be the distance the spring has been compressed
from equilibrium in total, namely, 0.40 m.∑

Fy = k∆y −mg = 0 =⇒ k =
mg

∆y
≈ 785 N/m

(b,c) The potential energy stored in the spring at the total compression distance of ∆y =0.4 m must
be

Us =
1
2
k (∆y)2 ≈ 62.8 J

Conservation of mechanical energy dictates that this original potential energy must be the same as
the total energy at the highest point.
(d) The maximum height h from the release point can be found by relating the original potential
energy in the spring to the final potential energy of the mass:

Ki + Ui =
1
2
k (∆y)2 = Kf + Uf = mgh =⇒ h =

k (∆y)2

2mg
≈ 0.8 m

3. Problem 8.21 from your textbook

(a) Let the y axis run vertically, with +y upward and the origin at the bottom of the pendulum’s
motion. The pendulum then starts at rest a height L above the origin. Applying conservation of
mechanical energy,

Ki + Ui = 0 + mgL = Kf + Uf =
1
2
mv2

bott

=⇒ vbott =
√

2gL ≈ 4.85 m/s

(b) After reaching the bottom of its motion, the pendulum will hit the peg at a distance r above
the origin. The string will wind around the peg, and the mass will reach a maximum height of 2r.
Applying conservation of energy from the bottom of the pendulum’s motion to the point when the
mass is at height 2r, and noting r=L− d,

Ki + Ui =
1
2
mv2

bott + 0 = mgL = Kf + Uf =
1
2
mv2

f + mg (2r)

mgL− 2mgr =
1
2
mv2

f

=⇒ v =
√

2g (L− 2r) =
√

2g (2d− L) ≈ 2.43 m/s

4. Problem 8.63 from your textbook

Let the the y axis run vertically, with +y upward, and the x axis horizontally, with +x to the right.
Let y=0 be the level of the flat region.

Initially, we release the mass m from a height h. Since there is no friction on the curved surfaces, we

2

can use conservation of mechanical energy to find the mass’ speed at the beginning of the flat surface:

Ki + Ui = 0 + mgh = Kf + Uf =
1
2
mv2

bott

vbott =
√

2gh

As the mass moves across the flat surface, which does have kinetic friction characterized by µk, energy
will be transferred away from the block by friction. The amount of work done by the frictional force
depends linearly on the distance traveled along the flat region.

If it still has nonzero velocity after reaching the end of the flat region, of length L, it will go up the
right-hand curved surface, come back down again, and proceed along the flat surface in the opposite
direction. Now we can use a slight trick. If the curved surface has no friction, the mass will go up the
track to a height h′ < h, and come back down with exactly the same speed. No mechanical energy is
lost on the curved surface, so the curved ramp does nothing more than change the particle’s direction.
The same will happen when the mass gets back to the original curved surface – all that will happen is
that the particle will change its direction, its speed will remain the same.

If that is the case, we just need to figure out how far in total the mass can travel under the influence of
kinetic friction, dtot. From that total distance, we only need to find how many times the mass can go
a distance L (how many times back and forth along the flat surface), and the remainder tells us where
the block stops within the flat region. In other words, we want to find dtot moduloi L: dtot mod n.ii

The frictional force on the block is fs = µkmg, and thus the work done over a distance d is Wf =
µkmgd. An energy balance between the top of the first ramp and the block’s final resting spot, noting
2h=L is then

Ki + Ui = Kf + Uf + Wf

0 + mgh = 0 + 0 + µkmgdtot

dtot =
h

µk
=

L

2µk
=

0.4 m
0.4

= 1 m

This is the total distance the block can travel against the given frictional force. Since the block actually
goes back and forth over a distance L, we want to find out how many multiples of L are congruent
with dtot and the remainder.iii. First, divide dtot by L and ignore the remainder:

number of transits =
⌊

dtot

L

⌋
=

⌊
1

0.4

⌋
=

⌊
2.5

⌋
= 2

The stopping position is the remainder:

stopping position = dtot mod L = dtot − L

⌊
dtot

L

⌋
= 1 m− 0.4 m (2) = 0.2 m

In short, the block can travel 1 m against the frictional force, which means 2.5 trips back and forth
across the flat region. During the third trip, it will stop halfway.

iSee http://en.wikipedia.org/wiki/Modulo_operation for a short introduction to modular arithmetic.
iione may also notate this dtot% n.

iiiHere we will use the floor function, which for an argument x gives the greatest integer not greater than x. See. http:
//en.wikipedia.org/wiki/Floor_function

3

http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Floor_function
http://en.wikipedia.org/wiki/Floor_function

5. Problem 8.53 from your textbook

There is no friction until the mass reaches the right-most flat region, a height h above the starting
point. Once motion on that flat region begins, the frictional force transfer energy away from the
block. The magnitude of the frictional force is fs =µkmg, and the work done by the frictional force
acting over a distance d is then Wf = µkmgd. From the starting point until the point at which the
block stops, we can balance the change in gravitational potential energy, the initial kinetic energy, and
the work done by the frictional force.

Ki + Ui = Kf + Uf + Wf

Let the the y axis run vertically, with +y upward, and the x axis horizontally, with +x to the right.
Let y=0 be the level of the left-most flat region where the mass starts its motion, with initial velocity
vo.

Ki + Ui = Kf + Uf + Wf

1
2
mv2

o + 0 = 0 + mgh− µkmgd

2µkgd = v2
o − 2gh

d =
v2

o − 2gh

2µkg
≈ 1.2 m

6. Problem 8.41 from your textbook

(a) The mechanical energy of the system at x = 5 m is just the given kinetic energy plus potential
energy at 5 m, U(5):

U(5 m) = −4 (5) e−5/4 ≈ −5.73 J

Emech

∣∣∣∣
x=5 m

= U(5 m) + K = −5.73 J + 2.0 J = −3.7 J

Technically, we should have been told that the 1/4 in the exponent has units of meters, since overall
exponents must be dimensionless.

(b) Here is a plot of U(x). The solid red line shows the particle’s total mechanical energy, Emech.

-2.5 0 2.5 5 7.5 10 12.5 15

-5

-2.5

2.5

4

(c,d) Here we are after the turning points of the particle. At these points, the particle’s kinetic energy
is zero, and thus its velocity must be zero, meaning the particle is changing directions . . . hence the
name. If K =0, then we must have Emech =U(x), the particle’s energy is entirely potential.

Emech = U(x)

−3.73 = −4xe−x/4

Either graphically (where the red line intersect the black curve above) or numerically, you should find
x={1.3, 9.1}.

(e,f,g) The maximum kinetic energy occurs when the potential is minimum, since K = Emech − U .
We don’t really need to do this part graphically: we can maximize K analytically, given a total energy.

K = E − U = E − 4xe−x/4

dK

dx
= −dU

dx
= F = −4e−x/4 − 4x

(
−1
4

e−x/4

)
= (x− 4) e−x/4 = 0

=⇒ Kmax at x = 4.0
Kmax = K(4 m) = E − U(4 m) ≈ 2.2 J

From the graph, this is clearly a minimum, and the position seems correct. We have also found the
force for free:

F = (x− 4) e−x/4 m

(h) From the form of F given above, it is clear that F =0 only at x=4.0 and as x →∞.

7. You’re driving your car on the highway at 75 mph, and you notice a sign that says you are 75 miles
from your destination. So if you continue driving at that speed, you’d be there in an hour. But, you’re
not going to do that, because then it wouldn’t be a puzzler. When you have driven one mile and you are
now 74 miles from your destination, you drop your speed down to 74 mph.

So, you drive that first mile at 75 mph; when you are 74 miles from your destination, you drop your
speed down to 74 mph; and then 73 mph, 72 mph . . . and so on. Until, finally, you get down to 1 mile
from your destination and you’re driving at one mile per hour.

And the question is, if you do this, how long is it going to take you to travel the entire 75 miles?

This was a problem originally posted on the radio show Car Talk, you can find their response here:
http://www.cartalk.com/content/puzzler/transcripts/200642/answer.html
Incidentally, the hosts Tom and Ray Magliozzi both have degrees from MIT. Anyway: we can figure
this out mile-by-mile. At constant speed, the time t taken to travel a distance d at velocity v is just

t =
d

v

If we traveled a total distance of 75 mi at 75 mi/h, the time would simply be

5

http://www.cartalk.com/content/puzzler/transcripts/200642/answer.html

to =
75 mi

75 mi/h
= 1 h

Of course, the problem presented is not this simple. For the first mile, we travel 1 mi at 75 mi/hr, for
the second, we travel 1 mi at 74 mi/h, and so on. This leads to a series of times for each mile, the sum
of which is the total trip time. After mile n, our speed reduces from vn to vn−1, or from 75−n to
75−n+1 miles per hour.

ttot = t1 + t2 + . . . + t75 =
1
v

+
1

v − 1
+ . . .

1
1

=
1∑

k=75

1
v − k

=
75∑

k=1

1
k

Looking at the series we end up with, it is nothing more than the harmonic series 1/n summed from
n=1 to n=75. There is no closed-form solution for the harmonic series through n terms, but there
is a nice approximation:

lim
n→∞

n∑
k=1

1
k

= lnn + γ

Here γ≈0.57721 is the Euler-Mascheroni constant. For sufficiently large n, we can approximate the
harmonic sum:

n=75∑
k=1

1
k
≈ ln k + γ ≈ 4.3175 + 0.57721 ≈ 4.895

Thus, the trip should take approximately 5 hours. One can also sum this series by brute-force, ideally
using a computer (see code examples below). The exact result is:iv

75∑
n=1

1
n

=
670758981768141571449624262218133
136851726813476721146087646859200

≈ 4.901355630553047

The approximation is good in this case to about 1%, and it gets better for larger series. The trip takes
just under 5 hours.

ivNote that the LISP program in the next section is unique will actually output this improper fraction. An elegant weapon
indeed. http://xkcd.com/297/

6

http://xkcd.com/297/

Randomness
I was bored on Saturday, so I whipped up solutions to this problem in various programming languages

for comparison. I made the C versions a bit fancier, taking command line arguments and such, but all
versions below work: standard C (iterative and recursive), LISP, pascal, fortran, java, perl, postscript,
python, and even a bash shell script.

Postscript was probably the most interesting to figure out. Since it is mostly for talking to printers,
it is wildly inefficient for the current task, but it does work. Since it is stack-based, it also looks much
different than the other languages. The output is very nice looking, however. Really - copy and paste the
code below into a file and save it as (say) “harmonic.ps." Open that file in, e.g., Preview, Acrobat Distiller,
Ghostview and you’ll have a nicely printed table of the harmonic series.

C:
// sums t h e p a r t i a l harmonic s e r i e s H(n) = 1 + 1/2 + . . . + 1/n
// u s a g e : p a s s "n" a s a command l i n e argument
// e . g . , harmonic 75 <e n t e r>
// r e t u r n s H(N) , t h e sum o f t h e f i r s t N t e r m s
//BY THE WAY: t h e i n p u t i s r e s t r i c t e d t o N<=1e5
// (c) P . L e C l a i r 2009

inc lude <s t d i o . h>

i n t main (i n t argc , const char ∗ a rgv [])
{

i n t i =0, DIST ;
double t =0;

i f (a r g c !=2) {
f p r i n t f (s t d e r r , " \ nUsage : %s NUM\n\n" ,∗ (a r gv)) ;
return (−1) ;

}

e l s e DIST= a t o i (∗ (a r gv + 1)) ;

i f (DIST>1e5) {
p r i n t f ("N out of r ange ; t r y a number l e s s than 1 e5 . \ n") ;
return (−1) ;

}

p r i n t f (" \ n P a r t i a l sums of the harmonic s e r i e s through n=%i terms : \ n" , DIST) ;

do {
t +=1.0/((double) ++i) ;
p r i n t f ("n=%i , H(% i)=%g\n" , i , i , t) ;

}
while (i<DIST) ;

return (0) ;
}

7

C (recursive):
// sums t h e p a r t i a l harmonic s e r i e s H(n) = 1 + 1/2 + . . . + 1/n
// u s a g e : p a s s "n" a s a command l i n e argument
// e . g . , harmonic 75 <e n t e r>
// r e t u r n s H(N) , t h e sum o f t h e f i r s t N t e r m s
//BY THE WAY: t h e i n p u t i s r e s t r i c t e d t o N<=1e5
// (c) P . L e C l a i r 2009

inc lude <s t d i o . h>

double sum (double N)
{

i f (N == 0) return 0 ;
return 1 . 0 /N + sum (N − 1 . 0) ;

}

i n t main (i n t argc , const char ∗ a rgv [])
{

i n t i =0, DIST ;
double t =0;

i f (a r g c !=2) {
f p r i n t f (s t d e r r , " \ nUsage : %s NUM\n\n" ,∗ (a r gv)) ;
return (−1) ;

}

e l s e DIST= a t o i (∗ (a r gv + 1)) ;

i f (DIST>1e5) {
f p r i n t f (s t d e r r , "N out of r ange ; t r y a number l e s s than 1 e5 . \ n") ;
return (−1) ;

}

p r i n t f (" \ n P a r t i a l sum of the harmonic s e r i e s through n=%i terms : \ n" , DIST) ;
p r i n t f ("%g\n" , sum (DIST)) ;

return (0) ;
}

Bash script:
! / b in / b a s h
s i m p l e b a s h s c r i p t t o c a l c u l a t e f i r s t 75 t e r m s o f t h e harmnoic s e r i e s , a p p r o x
s i n c e b a s h o n l y d o e s i n t e g e r math , we make some a l l o w a n c e s
m u l t i p l y e v e r y t h i n g by 1 e6 and compute sum in m i l l i o n t h s :−)
count=1
sum=0
while [$count − l t 76] ; do

sum=$ (($sum + 1000000/ $count))
count=$ (($count + 1))

done
sum=$sum /1000000
echo "Sum = $sum"

8

Common LISP:
(de fun sum (N)

(loop for i from 1 to N
for sum = 1 then (+ sum (/ 1 i))
f i n a l l y (return sum)))

(format t "Sum of harmonic s e r i e s through 75 terms i s ~A~%" (sum 7 5))

Postscript:
%!PS
/LM 72 d e f %d e f i n e l e f t margin
/Times−Roman f i n d f o n t 8 s c a l e f o n t s e t f o n t
/ n s t r 7 s t r i n g d e f

/ newl ine
{ c u r r e n t p o i n t 8 sub % move y down by 8 p o i n t s
exch pop % drop old x c o o r d i n a t e
LM exch % r e p l a c e i t with l e f t margin
moveto } d e f % go t h e r e

/ harmonic
{ /num 0 d e f

/ c u r r e n t 1 d e f % loop counte r
{/num 1 c u r r e n t d iv num add d e f % add 1/ c u r r e n t to running sum
/ c u r r e n t c u r r e n t 1 add d e f %i n c r counte r

} r e p e a t
num

} d e f

/ prt−n %c o n v e r t g i v e n v a l u e to a s t r i n g
{ n s t r c v s show } d e f %then p r i n t i t

/ prtharmonic %g i v e n N, c a l c f i r s t N harmonic sums
{ dup prt−n %p r i n t N =
(=) show
harmonic prt−n% %g e t c u r r e n t p a r t i a l sum & p r i n t i t
newl ine %a long with a newl ine
} d e f

% −−−−−−−−−−− Program −−−−−−−−−−−−−−−
LM 700 moveto %go to upper l e f t co rne r of page
(P a r t i a l sums of the f i r s t 75 terms of the harmonic s e r i e s :) show
newl ine
newl ine
1 1 75 { prtharmonic } for %show every term from 1 to 75
showpage

9

Python:
pr int ’ \nSum of the f i r s t 75 terms of the harmonic s e r i e s 1/n . ’

sum=0

for i in r ange (1 , 7 6) :
sum = sum + 1/ f l o a t (i)

pr int ’ sum : ’ + s t r (sum)

Java:
// sum f i r s t N t e r m s o f harmonic s e r i e s
// c o m p i l e : j a v a c harmoic . j a v a
// run : j a v a harmonic N

import j a v a . i o . P r i n t W r i t e r ;

publ i c c l a s s harmonic {

publ i c s t a t i c void main (S t r i n g [] a r g s) {
// command l i n e argument g i v e s how many t e r m s t o sum o v e r
i n t N = I n t e g e r . p a r s e I n t (a r g s [0]) ;

double sum = 0 . 0 ;
for (i n t i =1; i<=N; i ++)

sum += 1 . 0 / i ;

System . out . p r i n t l n ("The sum of the f i r s t " + N
+ " terms of the harmonic s e r i e s i s " + sum) ;

}

}

Fortran:
PROGRAM HARMONIC
REAL : : SUM = 0
INTEGER : : I=1

DO I =1 ,75
SUM = SUM + 1 . 0 / I

END DO

WRITE (∗ ,∗) "Sum of harmonic s e r i e s through 75 terms : " ,SUM

END PROGRAM harmonic

10

Perl:
! / u s r / b in / p e r l
$sum=0;
for ($ counte r = 1 ; $counte r <= 7 5 ; ++$counte r) {

$sum = ($sum + 1/ $counte r) ;
}

pr int "Sum of harmonic s e r i e s through n=75: " , $sum , " \n" ;

Pascal:
program harmonic ;

var
i : Integer ;
sum : Real ;

begin
sum := 0 ;
i := 1 ;
r epea t

sum := sum + 1 . 0 / i ;
i := i + 1 ;

u n t i l (i =76) ;

Write (’Sum of f i r s t 75 terms of the harmonic s e r i e s : ’) ;
Writeln (sum) ;

end .

11

