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Solutions not yet completed: Halliday, Resnick, & Walker, problems 9.48, 9.53, 9.59, and 9.68

1. Halliday, Resnick, & Walker, problem 9.5

The key to solving this problem easily is to recognize that we can handle the system in parts. We can
first find the center of mass of the three hydrogen atoms, and replace all three by a single equivalent
mass at the center of mass position. Then we can use that equivalent mass and the nitrogen atom to
find the total center of mass.

The three hydrogen atoms (each of mass mh) form an equilateral triangle, and by symmetry their cen-
ter of mass must be at the center of the triangle. Conveniently, the center of the triangle formed by
the three hydrogen atoms has been placed at the origin. That means we can replace the three hydrogen
atoms by a single equivalent mass 3mh at the origin, independent of the presence of the nitrogen atom.

Now we need to find the center of mass of the equivalent mass 3mh at the origin and the nitrogen
atom (mass mn) at position yn =

√
L2 − d2. By symmetry, the center of mass must be along the y

axis, so xcom =zcom =0. From the definition of ycom, and noting mn/mh≈13.9,

ycom =
1

3mh + mn

(√
L2 − d2 + 0

)
=

mn/mh

3 + mn/mh

√
L2 − d2 ≈ 3.13× 10−11 m

What about doing the problem without using symmetry, and simply writing down the (x, y, z) coor-
dinates of each atom? It works out the same way, even if you don’t first find the COM of the three
hydrogen atoms separately. We will leave to you to verify this.

2. Halliday, Resnick, & Walker, problem 9.8

Let the x axis run vertically, with its origin at the base of the can and +x being upward. Let the height
of the can be h.

We can first model the soda and the can itself as point particles at their respective centers of mass. The
can is easy: it has a mass mc and its center of mass must be halfway up the can at h/2. Clearly, when
the can is totally full or totally empty, the total COM of the can + soda system must be at x=6 cm –
when the can is full, the soda is just a second cylinder whose COM is also h/2, and when it is empty
. . . we just have the can.

What about the soda? Since we know it takes a mass of soda ms,f = 1.31 kg to fill the entire can of
height h, and we know the can is a cylinder, we can find the soda’s mass at any depth of filling x.
Imagine the can has a cross-sectional area A. Then the density of the soda ρ must be



ρ =
ms,f

Ah

If the can is filled to a depth x, then the mass of soda in the can ms(x) is just

ms(x) = ρV = ρ(xA) =
ms,fx

h
=

(x

h

)
ms,f

The result is somewhat obvious: the mass of soda in the can is the fractional filling times the total
mass. If the soda is filled to a depth x, the soda itself is a cylinder of height x, and it must have a center
of mass at x/2. Now we have the center of mass of both soda and can, we can find the center of mass
of the combined system.

xcom =
1

mc + ms(x)

[
h

2
mc +

x

2
ms(x)

]
=

mch +
x2

h
ms,f

2
[
mc +

x

h
ms,f

] =
mch

2 + ms,fx2

2 [mch + ms,fx]

As the plot below indicates, the COM starts at 6 cm, decreases initially as the soda begins to drain
out, and rises back to 6 cm as the soda completely drains away.
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3. Halliday, Resnick, & Walker, problem 9.15

At this point, we know very well how to find the peak point of the initial projectile’s motion. Until
the projectile splits in two, its motion is described by a parabola:

y(x) = x tan θ − gx2

2v2
x

Extremizing, we find the maximum height is h at horizontal distance

xfrag =
v2

i sin 2θ

2g

And evaluating y(xfrag)=h, we find

h =
v2

i sin2 θ

2g



At that point, the projectile splits into two fragments. Since no horizontal forces act, the horizon-
tal component of the momentum is conserved. This is not true for the vertical component of the
momentum, since the gravitational force is acting on the fragments. At the top of the trajectory, the
velocity is purely horizontal, in the x direction:

pxi = pi cos θ = mvi cos θ = pf = m2v2x

=⇒ v2x =
m

m2
vi cos θ

The mass m2 is now just another projectile, and we can easily find the coordinates of its landing, given
its purely horizontal velocity v2x and its initial position (xfrag, h). Its trajectory is thus

y2(x) = h−
g

(
x− xfrag

)2

2v2
2x

=
v2

i sin2 θ

2g
−

m2
2g

(
x− xfrag

)2

2m2v2
i cos2 θ

The second fragment will land when y2 =0:

y2(x) =
v2

i sin2 θ

2g
−

m2
2g

(
x− xfrag

)2

2m2v2
i cos2 θ

= 0

x− xfrag =
0±

√
m2

2 tan2 θ

m2

m2
2g

m2v2
i cos2 θ

=
mv2

i cos2 θ tan θ

m2g
=

mv2
i cos θ sin θ

m2g

The positive root is the physical one we seek, since it corresponds to the second fragment landing
further from the source than xfrag. Substituting sin θ cos θ= 1

2 sin 2θ and our expression for xfrag,

x = xfrag +
mv2

i cos θ sin θ

m2g
=

v2
i sin 2θ

2g
+

mv2
i sin 2θ

2m2g
=

[
1 +

m

m2

]
v2

i sin 2θ

2g

Given that fragment 2 is half the total projectile mass, or 2m2 =m,

x =
3
2

v2
i sin 2θ

g
≈ 53 m

4. Halliday, Resnick, & Walker, problem 9.33

If the elevator of mass m falls from a height y=36 m, we can find the velocity upon impact vf easily
from conservation of energy:

mgy =
1
2
mv2

f

vf =
√

2gy ≈ 27 m/s

(a) The impulse can be found from the total change in momentum before and after the collision,
noting that the elevator starts at rest:

J = ∆p = pf − pi = mvf −mvi = m
√

2gy ≈ 2400 kg m/s2



(b) The average force is now readily found given the duration of the collision ∆t=5× 10−3 s:

Favg =
∆p

∆t
≈ 4.8× 105 N

(c) If the passenger jumps upward at 7 m/s just before the collision, we need only to correct his or her
final momentum in part (a). Relative to the ground, the passenger now has a velocity just before the
collision of vf−7 m/s, rather than vf . After the collision . . . well, the passenger’s velocity is still zero
one way or another.

J = ∆p = pf − pi = mvf −mvi = m
(√

2gy − 7 m/s
)
≈ 1800 kg m/s2

(d) Not much difference. Looking at the average force is only more depressing:

Favg =
∆p

∆t
≈ 3.5× 105 N

Noting the passenger’s weight of W =90g≈883 N, we can estimate how many “g’s" he or she pulls:

“g’s” =
Favg

W
=

aavg

g

no jumping: ≈ 540 “g’s”
with jumping: ≈ 400 “g’s”

Under optimistic conditions, humans can briefly survive about 100 “g’s” during impact.i Don’t bother
jumping.

5. Halliday, Resnick, & Walker, problem 9.45

There are no external forces acting, so both horizontal (x) and vertical (y) momentum must be con-
served. Before the explosion, we have

~pi = 0

After the explosion, we have three fragments of mass m, m and 3m with velocities ~v1, ~v2 and ~v3,
respectively. We are given ~v1 = −30 m/s ı̂ and ~v2 = −30 m/s ̂. The third fragment has unknown
speed at an unknown angle θ. We can write momentum along both axes easily, noting that mass 1
travels purely along x and mass 2 travels purely along y.

~pf = m~v1 + 3m~v3

pxf = mv1 + 3mv3 cos θ

pyf = mv2 + 3mv3 sin θ

Balancing initial and final momentum,

0 = mv1 + 3mv3 cos θ

0 = mv2 + 3mv3 sin θ

Rearranging, and canceling the common factor m

ihttp://en.wikipedia.org/wiki/G-force#Human_tolerance

http://en.wikipedia.org/wiki/G-force#Human_tolerance


−v1 = 3v3 cos θ = 3v3x

−v2 = 3v3 sin θ = 3v3y

Dividing these two equations, we have tan θ = 1, or θ = 45◦.ii This implies sin θ = cos θ = 1/
√

2.
Thus,

v3 =
−v1

3 sin θ
=
−
√

2
3

v1 ≈ 14 m/s

The third particle has speed 14 m/s, moving at 45◦ relative to the x axis (̂ı direction).

iiThe other possibility mathematically is 225◦. This is perfectly valid, but will simply result in a speed of the opposite sign,
meaning we will have the same velocity vector anyway.


