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Problem Set 9 Solutions

1. A particle begins at the origin and moves successively in the following directions:

• 1 unit to the right (+x)
• 1

2 unit up (+y)
• 1

4 unit to the right
• 1

8 unit down
• 1

16 unit to the right
• etc.

The length of each move is half the length of the previous move, and movement continues in the “zigzag" manner
described. Find the coordinates of the point to which the zigzag converges.

Solution: Consider the x and y coordinates separately. The increasing x and y coordinates can each be described
by a geometric series.
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Both series have the general form

∞∑
n=0

azn (|z| < 1)

Now we must prove that series of this sort have a finite sum, and evaluate that sum. We will sketch a relatively
general proof. Let a and z be complex numbers a, z ∈ C. First consider the finite geometric series

x(n) ≡ azn n ∈ N0 = {0, 1, 2, . . .}

where n is a non-negative integer. The partial sum of this series through the first N terms can be defined byi

SN (z) =
N−1∑
n=0

azn = a
(
1 + z + z2 + z3 + . . . + zN+1

)
The partial sum SN (z) can be evaluated by finding the difference between SN (z) and zSN (z):

iThe limit of the summation is N − 1 to give the first N terms since we start at n=0.
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SN (z) ≡ a
(
1 + z + z2 + . . . + zN−1

)
zSN (z) = a

(
z + z2 + . . . + zN

)
=⇒ SN (z)− zSN (z) = a

(
1− zN

)
=⇒ SN (z) =

a
(
1− zN

)
1− z

(z 6= 1)

If z = 1, the partial sum is SN (1) = N by inspection. For an infinite geometric series, we must only evaluate the
limit of the partial sum as N approaches infinity.

lim
N→∞

SN (z) = lim
N→∞

a
(
1− zN

)
1− z

= lim
N→∞

(
a

1− z
− azN

1− z

)
=

(
a
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)
−
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a
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)
lim

N→∞
zN

lim
N→∞

SN (z) =


a

1− z
(|z| < 1)

±∞ (|z| ≥ 1)

We see that the infinite geometric series is (absolutely) convergent provided |z|<1, since

lim
N→∞

zN = 0 (|z| < 1)

Applied to the present case, we see for the x coordinate that ax =1 and zx = 1
4 and for the y coordinate ay = 1

2 and
zy =− 1

4 . Thus,
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∞∑
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∞∑
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Our particle therefore converges to the coordinates
(

4
3
,
2
5

)
.

N.B. – This was a 1984 American Regions Mathematics League (ARML) competition question.

2. Halliday, Resnick, & Walker, problem 11.14

Solution: Our sphere starts out at point A in the sketch below already undergoing smooth rolling motion, with
center of mass velocity vi. Since the sphere rolls without slipping, its angular and linear velocities must be related
by the sphere’s radius R, vi =Rω. We can apply conservation of mechanical energy to find the sphere’s velocity at
point B. Let the zero of gravitational potential energy be the lowest level in the diagram (the height of point A).
At A, the total mechanical energy is purely kinetic, with both linear and rotational terms:

KA + UA =
1
2
mvi +

1
2
Iω2

i =
1
2
mvi +

1
2
I
v2

i

R
=

1
2
v2

i

(
m +

I

R2

)
At point B, we also have translational and rotational kinetic energy, characterized by linear and angular velocities
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h1
h2

d
A

B

C

vb and ωb, respectively. We still have vb = Rωb, since the motion is purely rolling without slipping. We also have
now a gravitational potential energy mgh1, and

KB + UB =
1
2
v2

b

(
m +

I

R2

)
+ mgh1

Applying conservation of energy between A and B, we can solve for vi:

KA + UA = KB + UB

1
2
v2

i

(
m +

I

R2

)
=

1
2
v2

b

(
m +

I

R2

)
+ mgh1

v2
i = v2

b +
2mgh1

m + I/R2

We need only an expression for vb. At point B, the sphere is launched from height h2 above the far right platform,
and it behaves just as any other projectile. In the absence of air resistance, the rate of rotation ω will not change
from B to C, and we can therefore ignore the rotational motion. The sphere covers a horizontal distance d in
a time t after being launched horizontally at vb, and it covers a vertical distance h2 in the same time t under the
influence of gravity. Thus,

d = vbt

−h2 = −1
2
gt2

=⇒ vb = d

√
g

2h2

Using this result in our expression above, and noting I = 2
5mr2 for a solid sphere,

v2
i = v2

b +
2mgh1

m + I/R2
=

d2g

2h2
+

2mgh1

m + I/R2

v2
i =

d2g

2h2
+

2mgh1

m + 2
5m

=
d2g

2h2
+

2gh1
7
5

=
d2g

2h2
+

10
7

gh1

vi =

√
d2g

2h2
+

10
7

gh1 ≈ 1.34 m/s

3. Halliday, Resnick, & Walker, problem 11.16
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Solution: First, a simple sketch for reference:

h1

h2

d

A

B

C

Once again, we need only apply conservation of energy. The object starts out at A with only gravitational potential
energy, and at B has gained rotational and translational kinetic energy. Since we have rolling motion without
slipping, we can relate linear and angular velocities at B via v=Rω. Let the zero for gravitational potential energy
by the lowest level in the figure (that of C). Conservation of energy between A and B yields:

mgH =
1
2
mv2 +

1
2
Iω2 + mgh

mg (H − h) =
1
2
mv2 +

1
2
I

v2

R2
=

1
2
v2

(
m +

I

R2

)
=

1
2
v2 (m + βm) =

1
2
mv2 (1 + β)

1 + β =
2g (H − h)

v2

β =
2g (H − h)

v2
− 1

We need only an expression for v. Just as in the previous problem, we can use the equations of projectile motion.

d = vt

−h = −1
2
gt2

=⇒ v = d

√
g

2h

Thus,

β =
2g (H − h)

v2
− 1 =

2g (H − h)
d2g

2h

− 1 =
4h (H − h)

d2
− 1 ≈ 0.25

4. Halliday, Resnick, & Walker, problem 11.35

Solution: This problem is sneakier than it seems on first sight, since we don’t know the net force involved. Without
that, we can’t simply use the definition of torque ~τ =~r× ~F. However, we can calculate the angular momentum ~L
with the quantities given, and its time derivative gives us the torque.

~L =~r× ~p = m (~r×~v) = m

(
~r× d~r

dt

)
~v =

d~r
dt

= 8.0t ı̂− (2.0 + 12t) ̂
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It is marginally easier to first calculate the cross product:

~r×~v =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
rx ry rz

vx vy vz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ı̂ ̂ k̂

4.0t2 −
(
2.0t + 6.0t2

)
0

8.0t − (2.0 + 12t) 0

∣∣∣∣∣∣∣ =
[
−4.0t2 (2.0 + 12t) + 8.0t

(
2.0t + 6.0t2

)]
k̂ = 8t2 k̂

Thus,

~L = 8mt2 k̂

~τ =
d~L
dt

= 16mt k̂ = 48t k̂

It is comforting that ~L and ~τ are both perpendicular to the plane formed by~r and ~v.

By inspection, we can see that angular momentum is increasing for all t ≥ 0.

5. Halliday, Resnick, & Walker, problem 11.41

Solution: Again, a quick sketch:

r2r

r

1 3
2

2’

The square is made up of four thin rods of length r, while the hoop has radius r. First, we calculate the moment of
inertia of the square. The first rod labeled “1” is on the axis of rotation. If its thickness is negligible, its moment of
inertia is essentially zero – all the mass is at distance zero from the axis of rotation. The horizontal rods 2 and 2′

are both rotating about a distance r/2 from their center of mass, and thus

I2 = I2′ = Icom + m
(r

2

)2

=
1
12

mr2 +
1
4
mr2 =

1
3
mr2

The rod labeled 3 has all its mass located a distance r from the axis of rotation (still presuming the thickness to be
negligible), and thus its moment of inertia is the same as that of a particle of mass m a distance r from the axis of
rotation, I3 =mr2. In total,

I� = I1 + I2 + I2′ + I3 = 0 +
1
3
mr2 +

1
3
mr2 + mr2 =

5
3
mr2

Our hoop rotates a distance r from its center of mass, and thus

I◦ = Icom + mr2 =
1
2
mr2 + mr2 =

3
2
mr2

The total system then has
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Itot = I� + I◦ =
(

5
3

+
3
2

)
mr2 =

19
6

mr2 ≈ 1.6 kg m2

The total angular momentum can be found from the moment of inertia and the angular velocity, the latter of which
can be found easily from the period of rotation:

ω =
2π

T

L = Itotω =
2πItot

T
=

19πmr2

3T
≈ 4.0 kg m2/s

6. Halliday, Resnick, & Walker, problem 11.66

Solution: Again, a quick sketch. Let A be the starting point, B the moment of collision between the ball and rod,
and C the point when maximum height is reached by the rod + ball system. We approximate the ball as a point
mass, since we are told it is small (and we anyway have no way of calculating its moment of inertia, since we do not
have any geometrical details . . . ).

A

BC

m

M

hθl cos θ l

The velocity v of the ball at point B can be found using conservation of mechanical energy. Let the floor be the
height of zero gravitational potential energy.

KA + UA = KB + UB

mgh =
1
2
mv2

=⇒ v =
√

2gh

The collision is clearly inelastic, since the ball sticks to the rod. We could use conservation of linear momentum,
but this would require breaking up the rod into infinitesimal discrete bits of mass and integrating over its length.
Easier is to use conservation of angular momentum about the pivot point of the rod. Just before the collision, we
have the ball moving at speed v a distance l. Let ı̂ be to the right, and ̂ upward (making k̂ into the page). The
initial angular momentum is then

~Li =~r× ~p = l ̂× (−mv ı̂) = −mvl (̂× ı̂) = mvl k̂ = ml
√

2gh k̂

After the collision, we have the rod and mass stuck together, rotating at angular velocity ω. Defining counterclock-
wise rotation to be positive as usual, the final angular momentum is thus

~Lf = Iω k̂
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The total moment of inertia about the pivot point is that of the rod rotating plus that of the ball. The rod rotates a
distance l/2 from its center of mass, and again we approximate the ball as a point mass rotating at a distance l (since
we told it is small).

I = Irod + Iball = Irod, com + M

(
l

2

)2

+ ml2 =
1
12

Ml2 + Ml2 + ml2 =
(

1
3
M + m

)
l2

Equating initial and final angular momentum, we can solve for the angular velocity after the collision:

Lf = Iω = Li = mvl = ml
√

2gh(
1
3
M + m

)
l2ω = ml

√
2gh

ω =
m
√

2gh(
1
3
M + m

)
l

At this point, we may use conservation of energy once again. When the system reaches its maximum angle θ at C,
the center of mass of the rod + ball system will have moved up by an amount ∆ycm. The change in gravitational
potential energy related to this change in center of mass height must be equal to the rotational kinetic energy just
after the collision. Thus,

1
2
Iω2 =

~L · ~L
2I

=
L2

2I
= (m + M) g∆ycm

Here we have noted that the rotational kinetic energy can be related to the angular momentum to save a bit of
algebra. To proceed, we must find the difference in the center of mass height between points C and B. Let y=0 be
the height of the floor. At point B,

ycm,B =
M

(
L

2

)
+ m (0)

m + M
=

(
l

2

) (
M

m + M

)
At point C, the ball is now at a height l − l cos θ, while the center of mass of the rod (its midpoint) is now at
l − l cos θ + 1

2 l cos θ. Thus,

ycm,C =
M

(
l − l cos θ +

1
2
l cos θ

)
+ m (l − l cos θ)

m + M
=

Ml

(
1− 1

2
cos θ

)
+ ml (1− cos θ)

m + M

The change in center of mass height can now be found:

∆ycm = ycm,C − ycm,B =
Ml

(
1− 1

2
cos θ

)
+ ml (1− cos θ)− 1

2
Ml

m + M

=

1
2
Ml (1− cos θ) + ml (1− cos θ)

m + M

=
l

m + M
(1− cos θ)

(
m +

1
2
M

)
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Using our previous energy balance between B and C,

L2

2I
= (m + M) g∆ycm = lg (1− cos θ)

(
m +

1
2
M

)
Since the initial and final angular momenta are equal, we may substitute either Lf or Li, the latter being the easiest
option. This is not strictly necessary – we could use Lf or even just grind through 1

2Iω2 and the result must be the
same. However, using Li here saves quite a bit of algebra in the end when we try to put θ in terms of only given
quantities. Doing so, and solving for θ

L2
f

2I
=

L2
i

2I
=

2l2m2gh

2
(

1
3M + m

)
l2

= lg (1− cos θ)
(

m +
1
2
M

)
1− cos θ =

m2h

l
(

1
3M + m

) (
1
2M + m

)
θ = cos−1

[
1− m2h

l
(

1
3M + m

) (
1
2M + m

)]
≈ 32◦

Note that for m=0, θ=0, as we expect. On the other hand, for M =0 we have cos θ=1− h/l=1/2. This means
that the particle is at a height l − l cos θ= l/2=h at point C – exactly what we would expect if mechanical energy
were conserved!

7. Halliday, Resnick, & Walker, problem 11.67

Solution: Again, a quick sketch.

θ

l
m1

m2

vi

m2

(a) Our dumbbell, consisting of two masses m2 both a distance l from its center of mass, is struck by a smaller
mass m1 traveling at velocity ~vi. Conservation of angular momentum can be used to find the angular velocity
after the collision. Before the collision, with ı̂ to the right and ̂ upward, we have the smaller mass’ momentum
~pi =−m1vi ̂ acting at a distance~r= l ı̂ from the center of rotation.

~Li =~r× ~p = −m1lvi k̂

The minus sign indicates a clockwise rotation following our usual convention, which is sensible. After the collision,
the entire system rotates clockwise at angular velocity ~ω=−ω k̂. The total moment of inertia is found easily, since
we have only point-like masses:

I =
∑

i

mir
2
i = m2l

2 + m2l
2 + m1l

2 = l2 (2m2 + m1)

The final angular momentum is then
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~Lf = I~ω = −l2ω (2m2 + m1) k̂

Conservation of angular momentum gives us

~ω =
Li

I
=

m1vi

(2m2 + m1) l
k̂ ≈ 0.15 rad/s k̂

(b) The initial kinetic energy of the system is only that of the smaller mass, Ki = 1
2m1v

2
i . The final kinetic energy

is the rotational kinetic energy of the whole system, which is simplified a bit in terms of angular momentum

Kf =
1
2
Iω2 =

~L · ~L
2I

=
L2

i

2I
=

m2
1l

2v2
i

2l2 (2m2 + m1)
=

1
2
m1v

2
i

(
m1

2m2 + m1

)
= Ki

(
m1

2m2 + m1

)
Note that since angular momentum is conserved, we can use either Li or Lf in the kinetic energy equation; using
Li is somewhat simpler algebraically. The ratio of final to initial kinetic energies is thus

Kf

Ki
=

m1

2m2 + m1
≈ 0.0123

(c) What happens once the system starts rotating? Even without the initial kinetic energy of the smaller mass,
since all forces present after the collision are conservative the whole system would have enough energy to rotate
through 180◦, since that would put all of the masses back at the same height. The gravitational potential energy of
the system right after the collision is the same as that after rotating through 180◦, so the system must rotate at least
that much.

After rotating through 180◦, the total mechanical energy of the system is unchanged from the point right after
the collision. The system will continue rotating through a further maximum angle θ at which point the gain in
potential energy equals the kinetic energy right after the collision, Kf . As the system rotates, one of the m2 masses
will go up by an amount h = l sin θ, and the other m2 mass will go down by the same amount. The only change
in potential energy comes from the smaller m1 mass moving up by h! We can balance mechanical energy between
configurations right after the collision, after rotating through 180◦, and after rotating through an additional angle
θ. Let the initial horizontal axis of the dumbbell be the zero of potential energy.

after collision: K + U = Kf

after rotating through 180◦: K + U = Kf

after an additional rotation by θ: K + U = m2gl sin θ + m1gl sin θ −m2gl sin θ = m1gl sin θ

conservation of mechanical energy =⇒ m1gl sin θ = Kf =
m2

1v
2
i

2 (2m2 + m1)

sin θ =
m1v

2
i

2gl (2m2 + m1)

θ = sin−1

[
m1v

2
i

2gl (2m2 + m1)

]
≈ 1.3◦

The total angle of rotation is thus 180◦ + 1.3◦=181.3◦.
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