
PH 125 / LeClair Spring 2014

Problem Set 1 Solutions

Daily problems due 13 Jan 2014

1. Here are two vectors:

~a = 1.0 ı̂ + 2.0 ̂ ~b = 3.0 ı̂ + 4.0 ̂

Find the following quantities:

a) the magnitude of ~a
b) the angle of ~a relative to ~b
c) the magnitude and angle of ~a + ~b
d) the magnitude and angle of ~a − ~b

Solution: Since this is a purely mathematical problem, we’ll forgo the problem solving template.

(a) If ~a is in general a vector defined by ~a=axı̂ + ay ̂, the magnitude of ~a is found by

|~a| =
√
a2

x + a2
y (1)

In the present case, this gives |a|=
√

5.

(b) The angle θ between ~a and ~b is most easily found using the scalar product:

~a · ~b = |~a||~b| cos θ = axbx + ayby (2)

Thus,

cos θ = axbx + ayby

|~a||~b|
= 3 + 8(√

5
)

(5)
= 11

5
√

5
(3)

θ = cos−1
( 11

5
√

5

)
≈ 10.3◦ (4)

(c) First we’ll need the vector sum

~a + ~b = (ax + bx) ı̂ + (ay + by) ̂ = 4̂ı + 6̂ (5)

The magnitude is easy enough



|~a + ~b| =
√

(ax + bx)2 + (ay + by)2 =
√

42 + 62 =
√

52 = 2
√

13 (6)

The tangent of the angle with the horizontal axis is the ratio of the y and x components:

tan θ = ay + by

ax + bx
= 6

3 = 2 (7)

θ = tan−1 2 = 63.4◦ (8)

(d) Same deal, but we reverse the sign of ~b to perform subtraction.

~a − ~b = ~a + (−~b) = (ax − bx) ı̂ + (ay − by) ̂ = −2̂ı +−2̂ (9)

The magnitude proceeds as it did in the last part . . .

|~a − ~b| =
√

(ax − bx)2 + (ay − by)2 =
√

(−2)2 + (−2)2 =
√

8 = 2
√

2 (10)

. . . as does the determination of the angle:

tan θ = ay − by

ax − bx
= −2
−2 = 1 (11)

θ = tan−1 1 = 45◦ (12)

The angle the vector makes with respect to the horizontal axis is 45◦. We should be careful,
however: knowing that both components are negative, we know the vector points down and to the
left. This tells us that the vector is pointing 45◦ below the horizontal axis, and backward along the
−y direction. If we want to be more precise, we might say the vector makes an angle of 225◦ with
the x axis.

2. (a) If the position of a particle is given by x=20t−5t3, where x is in meters and t is in seconds,
when, if ever, is the particle’s velocity zero? (b) When is its acceleration a zero? (c) For what time
range (positive or negative) is a negative? (d) Positive? (e) Sketch graphs of x(t), v(t), and a(t).

Solution: Let’s try to apply the problem template in solving this one.

Find/given: We are given a particle’s position as a function of time x(t). We are asked to find
a number of things: when the particle’s velocity v is zero, when its acceleration a is zero, and for
what times the acceleration is positive or negative. Additionally, we should sketch the position,
velocity, and acceleration as a function of time.

Sketch: All we can really do in this case starting out is plot the function x(t). See the end of the
solutions for details on how I made the plot, if you are curious.
We know v(t) is the slope of the x(t) curve for a given time t, so we can already see that the velocity
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Figure 1: Plot using simple Python code

is zero at two different times.

Relevant equations: We will need to know the relationships between position, velocity, and
acceleration:

v = dx

dt
(13)

a = dv

dt
= d2x

dt2
(14)

Symbolic solution: We require this for parts a-e. (a) We can find the velocity by noting v=dx/dt:

v(t) = dx

dt
= 20− 15t2 = 0 (15)

15t2 = 20 (16)

t2 = 20
15 = 4

3 (17)

t = ± 2√
3

(18)

There is nothing from the setup of the problem to suggest that the given position is not valid for
times less than zero, so we must conclude that there are two such times: ±2/

√
3 s.

(b) The acceleration is found from a=dv/dt:

a = dv

dt
= d2x

dt2
= −30t (19)

Clearly, a=0 only at t=0.

(c,d) Given a=−30t, a is negative for all t<0 and positive for all t>0.

(e) Knowing how to relate position, velocity, and acceleration, we can plot them all together:
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Figure 2: Plot using simple Python code

Numerical solution: There is not much to do in this case, since the problem inherently involved
numbers in the first place, except to note that for part (a) t=2/

√
3≈±1.2 s.

Double Check: In this case, the problem is purely mathematical: the fact that the math works
out is really enough. One simple double check is to verify that the plot agrees with the mathematics.
We see that velocity is zero where the position is at a minimum or maximum, and this seems to
happen at about 1.2 s on the graph. We also note that the acceleration is positive where the velocity
curve has positive slope and negative where the velocity curve has negative slope.

Daily problem due 15 Jan 2014:

3. A pilot flies horizontally at 1300 km/h, at height h=35m above initially level ground. However,
at time t=0, the pilot begins to fly over ground sloping upward at angle θ=4.3◦. If the pilot does
not change the airplane’s heading, at what time t does the plane strike the ground?

Solution: This is problem 2.80 from your textbook (at least in the edition I have).

Given: The initial velocity and height of a plane flying toward an upward slope of angle θ.

Find: How long before the plane hits the slope? At time t=0, the plane is at the beginning of the



slope, a height h above level ground. Assuming the plane continues at the same horizontal speed,
we wish to find the time at which the plane hits the slope. Given the plane’s velocity and height
and the slope’s angle, we can relate the horizontal distance to intercept the ramp to the plane’s
height.

Sketch: Assume a spherical plane (it doesn’t matter). If the plane is at altitude h, it will hit the
ramp after covering a horizontal distance d, where tan θ=h/d.

θ
h

!v

d

h

Relevant equations: We can relate the horizontal distance to intersect the ramp to the plane’s
altitude using the known slope of ground:

tan θ = h

d

We can determine how long the horizontal distance d will be covered given the plane’s constant
horizontal speed v:

d = vt

Symbolic solution: Combining our equations above, the time t it takes for the plane to hit the
slope is

t = d

v
= h

v tan θ
Numeric solution: Using the numbers given, and converting units,

t = h

v tan θ = 35m
1300 km/h (1000m/km) (1h/3600 s) (tan 4.3◦) ≈ 1.3 s



The problems below are due by the end of the day on 17 Jan 2014.

4. (a) With what speed must a ball be thrown vertically from the ground level to rise to a maximum
height of 50m? (b) How long will it be in the air? (c) Sketch graphs of y, v, and a versus t for
the ball. On the first two graphs, indicate the time at which 50m is reached.

Solution: Given: The maximum height the ball will reach, ymax=50m.

Find: The initial speed viy required for a ball thrown vertically upward to reach a height of 50m
and the total time the ball remains in the air.

Sketch: A ball is thrown straight up in the air, you can probably use your imagination here. Let
the y axis run vertically, with the +y direction being upward and the starting position of the ball
at y=0. That makes the acceleration due to gravity −g, as it points downward. Let time t=0 be
the moment the ball is released.

Relevant equations: We will need only our equation for position under a constant acceleration
of −g and a definition of velocity. Since the ball starts at y=0, our position equation is somewhat
simpler.

y(t) = viyt−
1
2gt

2 (20)

vy(t) = dy

dt
= viy − gt (21)

Symbolic solution: At maximum height, the velocity is instantaneously zero. This bit of knowl-
edge lets us find out at what time tmax the ball reaches maximum height, and then we can use the
position equation to get the initial velocity.

vy(tmax) = viy − gtmax = 0 =⇒ tmax = viy

g
(22)

Already this solves the second portion of the problem: this is how long the ball takes to reach
maximum height, it takes the same amount of time to come back down. Thus, the ball spends a
net amount of time ∆t=2tmax in the air.

The position at time tmax is known to be ymax = 50m. If we know the time and the position, the
only unknown remaining in the position equation is the initial velocity.

y(tmax) = ymax = viy

(
viy

g

)
− 1

2g
(
viy

g

)2
=
v2

iy

2g (23)

v2
iy = 2gymax (24)

viy =
√

2gymax (25)



Numerical Solution: Plugging in the numbers given,

viy =
√

2gymax ≈
√

2 (9.8m/s2) (50m) ≈ 31m/s (26)

∆t = 2viy

g
≈ 2 (31m/s)

9.8m/s2 ≈ 6.4 s (27)

Below we provide the requested plots.
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Figure 3: Position, velocity, and acceleration for a ball thrown vertically that reaches a maximum height of 50m. The vertical
dashed lines show when the particle reaches maximum height and has velocity zero.

5. Two seconds after being projected from ground level, a projectile is displaced 40m horizontally
and 53m vertically above its launch point. What are the horizontal and vertical components of the
initial velocity of the projectile?

Solution: We will skip the template for this one. We know that at time t a projectile is at position
(x, y). For convenience, we will define the launch position to be the origin of our coordinate system.
Presuming the y axis to be vertical, with gravitational acceleration along −y, we can describe the
position of the projectile at any given time t:

y(t) = viyt−
1
2gt

2 (28)

x(t) = vixt (29)



Here vix and viy are respectively the x and y components of the initial (launch) velocity. Given
that we know x(t) and y(t) at the time of interest, all we need to do is solve the equations above
for velocity instead of position.

viy =
y + 1

2gt
2

t
(30)

vix = x

t
(31)

Given the position of the particle is (x, y)=(40, 53) at time t=2.0 s, a numerical solution is easy:

viy = 36m/s (32)

vix = 20m/s (33)

6. A person standing at the top of a hemispherical rock of radius R kicks a ball (initially at rest
on the top of the rock) to give it horizontal velocity ~vi as shown below. What must be its minimum
initial speed if the ball is never to hit the rock after it is kicked? Note this is not circular motion.

|!vi|

x

y

O d

R

ball’s trajectory

Figure 4: A ball is kicked off the top of a rock by an unseen person.

Solution: Find: The minimum speed for the ball not to hit the rock. As long as we’re at it, we
will also find the net horizontal distance it lands from the rock at that speed. Since the rock may
be described by a circle, and the ball’s motion a parabola, we are seeking a condition on the initial
velocity such that the parabola always lies above the circle.

Given: The geometry of the rock, the ball’s initial velocity.

Sketch: Let the x axis run horizontally and the y axis vertically, with the origin at the rock’s
center. This makes the ball’s starting position (0, R) and its launch angle with respect to the x
axis θ=0 (as shown in the figure included in the problem).

Relevant equations: We need the equation of a circle of radius R centered on the origin, and the
trajectory of a projectile fired at angle θ= 0 relative to the x axis with starting vertical position
y(0) =R. Let the circle be described by yp(x) and the rock yr(x). Since our solution is restricted



to the upper right quadrant, the rock may be described by

yr(x) =
√
R2 − x2 (34)

The ball’s trajectory is our well-known result

yp(x) = y(0) + (tan θ)x− gx2

2|~v|2 cos2 θ
= R− gx2

2|~v|2 (35)

Symbolic solution: The condition that the ball does not hit the rock is simply that the parabola
and circle above have no intersection point, other than the trivial one at (0, R). That is, the
parabola must lie above the circle everywhere except (0, R). Thus,

yp(x) ≥ yr(x)

R− gx2

2|~v|2 ≥
√
R2 − x2 (36)

In principle, this is it. Much algebra now ensues. First, simply square both sides and simplify.
Since both sides must be positive for all x considered, by the problem’s construction, this does not
alter the inequality.

(
R− gx2

2|~v|2

)2

≥
(√

R2 − x2
)2

R2 − gRx2

|~v|2 + g2x4

4|~v|4 ≥ R
2 − x2

(
g2

4|~v|2

)
x4 +

(
1− gR

|~v|2
)
x2 ≥ 0

x2
(

g2

4|~v|2x
2 + 1− gR

|~v|2

)
≥ 0

x2
(

g2

4|~v|2x
2 + 1− gR

|~v|2

)
≥ 0 (x 6= 0)

g2

4|~v|2x
2 + 1− gR

|~v|2 ≥ 0

g

4|~v|2x
2 ≥

(
gR

|~v|2 − 1
)

(37)

We require this inequality to be true for all x>0 for the ball not to hit the rock anywhere in the
domain of interest. The only way this can happen is if the right-hand side is negative:

gR

|~v|2 − 1 ≤ 0

=⇒ |~v| ≥
√
gR (38)



Note that this is not the same condition you would find by simply requiring the particle’s range to
be larger than R. It is easy to verify that one can make a parabola with horizontal range R in this
situation that still intersects the circle . . . try it out!

Where does the projectile land? Clearly, at yp = 0, since that is where the ground is. We simply
need to set the ball’s y position equal to zero, and solve for the resulting x value using our minimal
velocity from Eq. 38. This is where the ball lands.

yp = 0 = R− gx2

2|~v|2 = R− gx2

2gR = R− x2

2R
2R2 = x2

=⇒ x = R
√

2 (39)

What is more interesting is how far from the rock the ball lands. Since the rock extends to x=R,
we have gone beyond that by a distance

distance from rock = R
(√

2− 1
)

(40)

Numeric solution: Numbers? How awkward.
√

2≈ 1.41,
√

2 − 1≈ 0.41. The ball lands about
40% of the rock’s radius beyond its base. With g≈10, and √g≈3.2, the maximal velocity is about
3.2
√
R.

Double check: Things you can do: simply graph the two trajectories you came up with for a
given value of R, and verify they do not intersect. Check the units of the final answer. Check that
the ball lands beyond the base of the rock (it does).

Another way: Since the parabola has a maximal radius of curvature at at its apex, with a little
geometrical reasoning you can prove that if the circle and parabola are tangent at the parabola’s
apex, and the parabola’s radius of curvature there exceeds R, the two curves cannot intersect. It
does work: calculate the parabola’s radius of curvature, insist that it be larger than R, and the
same condition results: v≥

√
gR. I don’t really have the stamina to work up a full geometric proof

of that, however . . . perhaps one of you would do it for extra credit?

7. Here are three vectors:

~d1 = −2.0 ı̂ + 3.0 ̂ + 2.0 k̂
~d2 = −3.0 ı̂− 4.0 ̂− 2.0 k̂
~d3 = 1.0 ı̂ + 3.0 ̂ + 5.0 k̂

What is the result of the following operations?



a) ~d1 ·
(
~d2 + ~d3

)
b) ~d1 ·

(
~d2 × ~d3

)
c) ~d1 ×

(
~d2 + ~d3

)

Solution: Given: Three vectors ~d1, ~d2, and ~d3 in two-dimensional cartesian coordinates.

Find: The result of various sums and scalar and vector products given above.

Sketch: Not really necessary.

Relevant equations: In this case, we need only the requisite formulas for adding two vectors and
taking the scalar and vector products of two vectors. Given two vectors ~a and ~b,

~a = ax ı̂ + ay ̂ + az k̂
~b = bx ı̂ + by ̂ + bz k̂

Then ~a + ~b = (ax + bx) ı̂ + (ay + by) ̂ + (az + bz) k̂

~a · ~b = axbx + ayby + azbz

~a × ~b = det

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
ax ay az

bx by bz

∣∣∣∣∣∣∣∣ = (aybz − azby) x̂ + (azbx − axbz) ŷ + (axby − aybx) ẑ

The only other thing we need remember is to work first inside the parenthesis. For example, for
the first quantity, we need to find ~d2 +~d3 first, and then calculate the scalar product of it with ~d1.

Symbolic solution:
We can first find the results in a purely symbolic fashion by defining

~d1 = −2.0 ı̂ + 3.0 ̂ + 2.0 k̂ = d1x ı̂ + d1y ̂ + d1z k̂

and similarly for ~d2 and ~d3. Finding the answer symbolically first has the advantage of being more
amenable to double-checking our work later on . . . though it will require a bit more algebra in the
intermediate steps. So it goes.

Starting with the first quantity, working first inside the parenthesis:



~d1 ·
(
~d2 + ~d3

)
= ~d1 ·

[
(d2x + d3x) ı̂ + (d2y + d3y) ̂ + (d2z + d3z) k̂

]
=
[
d1x ı̂ + d1y ̂ + d1z k̂

]
·
[
(d2x + d3x) ı̂ + (d2y + d3y) ̂ + (d2z + d3z) k̂

]
= d1x (d2x + d3x) + d1y (d2y + d3y) + d1z (d2z + d3z)

For the second quantity, we first need to calculate the cross product of the second and third vectors.
It is a bit messy, but brute force is really the only way forward.

~d1 ·
(
~d2 × ~d3

)
= ~d1 ·

[
(d2yd3z − d2zd3y) ı̂ + (d2zd3x − d2xd3z) ̂ + (d2xd3y − d2yd3x) k̂

]
=
[
d1x ı̂ + d1y ̂ + d1z k̂

]
·
[
(d2yd3z − d2zd3y) ı̂ + (d2zd3x − d2xd3z) ̂ + (d2xd3y − d2yd3x) k̂

]
= d1x (d2yd3z − d2zd3y) + d1y (d2zd3x − d2xd3z) + d1z (d2xd3y − d2yd3x)

The third quantity is no more difficult; this time we first perform the addition, and then take a
cross product:

~d1 ×
(
~d2 + ~d3

)
= ~d1 ×

[
(d2x + d3x) ı̂ + (d2y + d3y) ̂ + (d2z + d3z) k̂

]
= [d1y (d2z + d3z)− d1z (d2y + d3y)] ı̂ + [d1z (d2x + d3x)− d1x (d2z + d3z)] ̂

+ [d1x (d2y + d3y)− d1y (d2x + d3x)] k̂

There is not much point in simplifying further, there are no like terms to collect.

Numeric solution:
All that is needed now is to plug in the actual numbers, noting that d1x =−3.0, d1y =3.0, d1z =2.0,
etc. For the first quantity:

~d1 ·
(
~d2 + ~d3

)
= d1x (d2x + d3x) + d1y (d2y + d3y) + d1z (d2z + d3z)

= −2.0 (−3.0 + 1.0) + 3.0 (−4.0 + 3.0) + 2.0 (−2.0 + 5.0) = 4.0− 3.0 + 6.0 = 7.0

For the second quantity:

~d1 ·
(
~d2 × ~d3

)
= d1x (d2yd3z − d2zd3y) + d1y (d2zd3x − d2xd3z) + d1z (d2xd3y − d2yd3x)

= −2.0 (−20.0 + 6.0) + 3.0 (−2.0 + 15.0) + 2.0 (−9.0 + 4.0) = 28.0 + 39.0− 10 = 57

For the third quantity:



[d1y (d2z + d3z)− d1z (d2y + d3y)] ı̂ + [d1z (d2x + d3x)− d1x (d2z + d3z)] ̂

+ [d1x (d2y + d3y)− d1y (d2x + d3x)] k̂

= [3.0 (−2.0 + 5.0)− 2.0 (−4.0 + 3.0)] ı̂ + [2.0 (−3.0 + 1.0) + 2.0 (−2.0 + 5.0)] ̂

+ [−2.0 (−4.0 + 3.0)− 3.0 (−3.0 + 1.0)] k̂

= [9.0 + 2.0] ı̂ + [−4 + 6.0] ̂ + [2.0 + 6.0] k̂

= 11.0 ı̂ + 2.0 ̂ + 8.0 k̂

Double check: Units. Order-of-magnitude. There are no units in this problem, but we can decide
what sort of solution should we expect qualitatively – should the answers be vectors, scalars, or
neither?

For the first quantity, the quantity inside parenthesis is the sum of two vectors, and therefore a
vector itself. We then need to find the scalar product of this vector with ~d1. The final quantity,
then, is the scalar product of two vectors, which is itself a scalar (i.e., just a number). This also
means that the product should have only terms with the product of two components, such as d1xd2x,
which is consistent with our answer.

The second quantity is similarly a scalar, since the cross product in parenthesis results in an (axial)
vector, whose scalar product with ~d1 also gives a scalar. Since there are two products here, the
final answer should have only terms with three components, such as d1xd2yd3z, consistent with our
answer.

The third quantity has a vector resulting in the parenthesis, and we need its vector product with
~d1, which gives an (axial) vector. Thus, only the third quantity is a vector at all, and only a
pseudovector at that, the other two are just numbers. Again, we have only one product here, so
the final answer should again have terms with two components.



8. A batter hits a baseball coming off of the bat at a 45◦ angle, making contact a distance 1.22m
above the ground. Over level ground, the batted ball has a range of 107m. Will the ball clear a
7.32m tall fence at a distance of 97.5m? Justify your answer. Hint: use the range equation to get
the velocity, then use the trajectory equation to find the path of the ball.

Solution: This is problem 4.47 from your textbook.

Find: Whether a batted baseball clears a fence, and by what amount it does or does not.

Given: The baseball’s initial launch height and angle, the range the baseball would have without
the fence, the distance to the fence and its height.

Sketch: Let the y axis run vertically and the x axis horizontally as shown below. Let the range
the baseball would have without the fence be R=107m, with the distance to the fence d=97.5m
and its height hfence = 7.32m. The baseball is batted at an angle θ= 45◦ at speed vi a height of
hbat=1.22m above the ground.

θ

!v

d

R

hbat

hfence

x

y

Let the origin be at the position the ball leaves the bat. The height of the fence relative to the
height of the bat is then

δh = hfence − hbat

What we really need to determine is the ball’s y coordinate at x=d. If y>δh, the ball clears the
fence. We can use the range the baseball would have without the fence and the launch angle to
find the ball’s speed, which will allow a complete calculation of the trajectory.

Relevant equations: We need only the equations for the range and trajectory of a projectile over
level ground:

R = v2
i sin 2θ
g

y(x) = x tan θ − gx2

2v2
i cos2 θ

Symbolic solution: From the range equation above, we can write the velocity in terms of known
quantities:



vi =

√
Rg

sin 2θ

The trajectory then becomes

y(x) = x tan θ − gx2 sin 2θ
2Rg cos2 θ

= x tan θ − x2 sin 2θ
2R cos2 θ

The height difference between the ball and the fence is y(d) − δh. If it is positive, the ball clears
the fence.

clearance = y(d)− δh = d tan θ − d2 sin 2θ
2R cos2 θ

− δh = d tan θ − d2 sin 2θ
2R cos2 θ

− hfence + hbat

= d tan θ − 2d2 sin θ cos θ
2R cos2 θ

− hfence + hbat = d tan θ
(

1− d

R

)
− hfence + hbat

Numeric solution: Using the numbers given, and noting tan 45◦ =1, sin 90◦ =1, and cos2 45◦ =1/2

clearance ≈ 2.56m

The ball does clear the fence, by approximately 2.56m.

9. A ball rolls horizontally off the top of a stairway with a speed of 1.52m/s. The steps are 20.3 cm
high and 20.3 cm wide. Which step does the ball hit first. You may assume that there are many,
many stairs.

Solution: Given: The dimensions of a staircase, and the initial velocity of a ball which rolls off
the staircase. Let the staircase width and height be d, and the ball’s initial speed |~vi|.

Find: Which step the ball first hits on its way down.

Sketch: We choose a cartesian coordinate system with x and y axes aligned with the stairs, as
shown below. Let the origin be the point at which the ball leaves the topmost stair. The ball is
launched horizontally off of the top step, and will follow a parabolic trajectory down the staircase.
How do we determine which stair will first be hit? From the sketch, it is clear that we need to
find at which point the ball’s parabolic trajectory (solid curve) passes below a line connecting the
right-most tips of each stair (dotted line).

Relevant equations: Based on our logic above, we need an equation for the ball’s trajectory and
an equation for the line describing the staircase boundary. The staircase itself is is composed of
steps of equal height and width. Therefore, a line from the origin connecting the right-most tip of
each stair (the dotted line in the figure) will have a slope of −1, and can be described by ys =−x.
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Figure 5: A projectile launched horizontally off the top of a staircase.

The ball will follow our now well-known parabolic trajectory. In this case, the launch angle is zero,
and the ball’s motion is described by setting θ=0 in Eq. ??:

yb = − gx2

2|~vi|2
(41)

We first need to find the x coordinate where yb =yx, which is the point where the parabolic trajec-
tory dips below the line defining the staircase slope. Call this coordinate xc. Given this coordinate,
we need to determine how many stairs this distance corresponds to. The ratio of xc to the stair
width should give us this number. However, we must keep in mind the fact that the staircase is
discrete: if we find that xc corresponds to, for example, 4.7 stair widths, what does that mean?
It means the ball crossed the fourth stair, but 70% of the way across the fifth one, its trajectory
dipped below the line defining the staircase. Thus, the ball would hit the fifth stair.

What we need, then, is to find the ratio of xc and the stair width d, and take the next largest integer.
This gives us the number of the stair the ball first hits ns. There is a mathematical function that
does exactly what we want, for this operation, the ceiling function. It takes a real-valued argument
x and gives back the next-highest integer. For example, if x= 3.2, then the ceiling of x is 4. The
standard notation is dxe=4.i.

ns =
⌈
xc

d

⌉
Symbolic solution: First, we need to find the point xc where the ball’s parabolic trajectory
intersects the staircase boundary line:

iIf you want to get all technical, dxe = min {n ∈ Z |n ≥ x}



yb = − gx2

2|vi|2
= ys = −x

0 = gx2

2|~vi|2
− x

0 = x

[
gx

2|~vi|2
+ 1

]
=⇒ xc =

{
0, 2|~vi|2

gd

}

As usual, one of our answers is the trivial solution, the one where the ball never leaves the staircase
(xc =0). The second solution is what we are after. The number of the stair that is first hit is then

ns =
⌈2|~vi|2

gd

⌉
Numeric solution: We are given |~vi|2 = 1.52m/s and d = 20.3 cm = 0.203m. Additionally, we
need g≈9.81m/s2.

ns =
⌈2|~vi|2

gd

⌉
=
⌈ 2 (1.52m/s)2

(9.81m/s2) (0.203m)

⌉
=
⌈
2.32

⌉
= 3

The ball will hit the third stair.

Double check: The ratio xc/d must be dimensionless, as we have shown it to be above; our units
are correct. Another “brute force” method of checking our result is to calculate the y position of
the projectile at the right-most edge of successive stairs. At the right-most edge of the nth stair,
the x coordinate is nd. If the y coordinate of the projectile’s trajectory is below (−nd) for the
right-most edge of a given stair, then we must have hit that stair.

Stair n x=nd (m) ys =nd (m) yb (m) result

1 0.203 -0.203 -0.0875 cleared
2 0.406 -0.406 -0.350 cleared
3 0.609 -0.609 -0.787 hit

The brute-force method confirms our result: the third stair is not cleared. While arguably faster,
this method lacks a certain . . . elegance. It is fine for double-checking, but purely symbolic solutions
are always preferred when they are possible.

10. A projectile’s launch speed is five times its speed at maximum height. Find the launch angle
θo.

Solution: Presume the vertical direction to be the y axis. At maximum height, we know the
vertical component of the velocity is instantaneously zero, vy = 0. The horizontal component of
the velocity vx remains constant throughout the motion. Thus, at maximum height the velocity is



purely in the horizontal x direction and has magnitude vx. Given an initial velocity vector ~vo and
launch angle θo, we know vx = |~vo| cos θo.

We are told that the launch speed |~vo| is five times the the speed at maximum height. At maximum
height the speed is |~vo| cos θo, thus,

|~vo| = 5|~vo| cos θo (42)

=⇒ cos θo = 1
5 (43)

θ ≈ 78.5◦ (44)



Appendix: making a simple plot in Python

I made the plots above using simple Python code. Obviously one could just use Excel or something,
and for small tasks like this, it would be faster. However, we will have occasion to do some numerical
simulations as the semester progresses, and this will be a handy trick. The code could be more
elegant, and the resulting plots much prettier, but I aimed for simplicity.

import numpy as np
import matp lo t l i b . pyplot as p l t

#de f ine v e l o c i t y , pos i t i on , and ac c e l e r a t i on func t i ons
def x ( t ) :

return 20∗ t−5∗t ∗ t ∗ t

def v ( t ) :
return 20−15∗ t ∗ t

def a ( t ) :
return −30∗ t

#spe c i f y a range o f time fo r the p l o t
t = np . arange ( −2.5 , 2 . 5 , 0 . 0 5 )

# one sub−p l o t f o r x ( t ) . s t ack a l l s u b p l o t s v e r t i c a l l y
# we have 3 rows , 1 column , t h i s i s p l o t 1
#y l a b e l , l i n e s f o r y=0 and x=0
p l t . subplot (311)
p l t . y l ab e l ( ’ x␣ (m) ’ )
p l t . axh l ine (y=0,c=’k ’ )
p l t . axv l i n e ( x=0,c=’k ’ )
p l t . p l o t ( t , x ( t ) , c=’b ’ )

# one fo r v ( t )
p l t . subplot (312)
p l t . y l ab e l ( ’ v␣ (m/ s ) ’ )
p l t . axh l ine (y=0,c=’k ’ )
p l t . axv l i n e ( x=0,c=’k ’ )
p l t . p l o t ( t , v ( t ) , c=’ r ’ )

#one fo r a ( t )
p l t . subplot (313)
p l t . y l ab e l ( ’ a␣ (m/ s$ ^{2}$ ) ’ )
p l t . axh l ine (y=0,c=’k ’ )
p l t . axv l i n e ( x=0,c=’k ’ )
p l t . p l o t ( t , a ( t ) , c=’ k ’ )

p l t . x l ab e l ( ’ time␣ ( s ) ’ ) #shared l a b e l on x ax i s

p l t . subplots_adjust ( l e f t =0.1 , r i g h t =0.5 , top=0.9 , bottom=0.1)

#p l t . show () #wr i t e to screen
p l t . s a v e f i g ( ’ foo . pdf ’ , bbox_inches=’ t i g h t ’ ) #wri t e to f i l e


