
PH 125 / LeClair Spring 2014

Problem Set 5 Solutions
1. A bowler throws a bowling ball of radius R along a lane. The ball slides on the lane with initial speed vo

and initial angular speed ωo =0. The coefficient of kinetic friction between the ball and the lane is µk. The
kinetic frictional force ~fk acting on the ball causes a linear acceleration of the ball while producing a torque
that causes an angular acceleration of the ball. When the center of mass speed vcm has decreased enough
and angular speed ω has increased enough, the ball stops sliding and then rolls smoothly. (a) What then is
the center of mass speed vcm in terms of ω? During the sliding, what are the ball’s (b) linear acceleration
and (c) angular acceleration? (d) How long does the ball slide? (e) How far does the ball slide? (f) What
is the linear speed of the ball when smooth rolling begins?

Solution: (a) Initially, the bowling ball is purely sliding, and as friction takes hold, the ball begins to roll.
During the pure sliding phase, the ball rotates about its center of mass, independent of the overall center of
mass motion.
After sufficient time, the rolling motion “catches up” with the sliding motion, and the ball begins to roll -
it is no longer spinning about its center of mass, rolling smoothly. This smooth rolling is equivalent to a
rotation about a point on the surface of the ball (not the center of mass), and as we derived earlier, this
means that at the point we have smooth rolling motion, center of mass velocity and angular velocity are
simply related:

vcom = rω

Here r is the given radius of the ball. During the sliding phase, we should write vcom > rω. The angular
velocity is not high enough for the ball to “catch" on the lane. i

(b) During the sliding phase, rotation is irrelevant to the dynamics - it is just like any other sliding object
we have analyzed. A force of kinetic friction acts at the interface between the ball and the lane, which is
equal in magnitude to fk = µkFN , where µk is the coefficient of kinetic friction and FN =mg the normal
force. Since this is the only force acting, we can easily apply Newton’s law:

∑
F = ma = −fk

a = −fk/m = −µkg

(c) The angular acceleration α during the sliding phase is also provided by the friction force fk. The friction
force acts at a distance r from the center of mass, and at a right angle to a radius drawn from the center of
mass to the intersection between the ball and lane. Thus, fk also provides a torque τ , and as the only torque
present, it must equal the moment of inertia of the ball times the angular acceleration. Noting I= 2

5mr
2 for

a solid sphere,

τnet = rfk = Iα = 2
5mr

2α

α = rfk
2
5mr

2 = 5µkmg

2mr = 5µkg

2r
iMy parents used to own a bowling alley. I can go into much more detail on this problem for the curious.



(d) During the sliding phase, the rotational and translational motion are essentially decoupled, and we can
consider the center of mass motion from the point of view of standard kinematics. That is,

vcom(t) = vcom(0) + at = vcom(0)− µkgt

Here vcom(0) is the initial center of mass velocity, and we imply t=0 at the moment the ball hits the lane.
The same is true for the rotational motion, with the added simplification that the initial angular velocity is
zero:

ω(t) = ω(0) + αt =
(

5µkg

2r

)
t

Say that the sliding stops at a time to. At the moment that sliding stops, we know that vcom(to) = rω(to).
This yields to, the time it takes to stop sliding, in terms of known quantities:

vcom(to) = rω(to)

vcom(0)− µkgto = 5
2µkgto

to

(
5
2µkg + µkg

)
= vcom(0)

to = vcom(0)
7
2µkg

= 2vcom(0)
7µkg

(e) Given the time to stop sliding, we can also find the distance covered d by standard kinematics:

d = vcom(0)to + 1
2at

2
o

= vcom(0)
(

2vcom(0)
7µkg

)
− 1

2µkg

(
2vcom(0)

7µkg

)2

= 2 [vcom(0)]2

7µkg
− 2 [vcom(0)]2

49µkg

= 12 [vcom(0)]2

49µkg

(f) The linear (i.e., center of mass) speed at the moment sliding stops is also just kinematics:

vcom(to) = vcom(0) + at = vcom(0)− µkgt

2. In the figure below, a small block of mass m slides down a frictionless surface through height h and then
sticks to a uniform rod of mass M and length L. The rod pivots about point O through angle θ before
momentarily stopping. Find θ.

Solution: Solution: Referring to the sketch above, let A be the starting point, B the moment of collision
between the ball and rod, and C the point when maximum height is reached by the rod + ball system. We
approximate the ball as a point mass, since we are told it is small (and we anyway have no way of calculating
its moment of inertia, since we do not have any geometrical details . . . ).



A

BC

m

M

hθl cos θ l

The velocity v of the ball at point B can be found using conservation of mechanical energy. Let the floor be
the height of zero gravitational potential energy.

KA + UA = KB + UB

mgh = 1
2mv

2

=⇒ v =
√

2gh

The collision is clearly inelastic, since the ball sticks to the rod. We could use conservation of linear momen-
tum, but this would require breaking up the rod into infinitesimal discrete bits of mass and integrating over
its length. Easier is to use conservation of angular momentum about the pivot point of the rod. Just before
the collision, we have the ball moving at speed v a distance l. Let ı̂ be to the right, and ̂ upward (making
k̂ into the page). The initial angular momentum is then

~Li =~r× ~p = l ̂× (−mv ı̂) = −mvl (̂× ı̂) = mvl k̂ = ml
√

2gh k̂

After the collision, we have the rod and mass stuck together, rotating at angular velocity ω. Defining
counterclockwise rotation to be positive as usual, the final angular momentum is thus

~Lf = Iω k̂

The total moment of inertia about the pivot point is that of the rod rotating plus that of the ball. The rod
rotates a distance l/2 from its center of mass, and again we approximate the ball as a point mass rotating
at a distance l (since we told it is small).

I = Irod + Iball = Irod, com +M

(
l

2

)2
+ml2 = 1

12Ml2 +Ml2 +ml2 =
(

1
3M +m

)
l2

Equating initial and final angular momentum, we can solve for the angular velocity after the collision:

Lf = Iω = Li = mvl = ml
√

2gh(
1
3M +m

)
l2ω = ml

√
2gh

ω = m
√

2gh(
1
3M +m

)
l



At this point, we may use conservation of energy once again. When the system reaches its maximum angle
θ at C, the center of mass of the rod + ball system will have moved up by an amount ∆ycm. The change in
gravitational potential energy related to this change in center of mass height must be equal to the rotational
kinetic energy just after the collision. Thus,

1
2Iω

2 =
~L · ~L

2I = L2

2I = (m+M) g∆ycm

Here we have noted that the rotational kinetic energy can be related to the angular momentum to save a bit
of algebra. To proceed, we must find the difference in the center of mass height between points C and B.
Let y=0 be the height of the floor. At point B,

ycm,B =
M

(
L

2

)
+m (0)

m+M
=
(
l

2

)(
M

m+M

)

At point C, the ball is now at a height l − l cos θ, while the center of mass of the rod (its midpoint) is now
at l − l cos θ + 1

2 l cos θ. Thus,

ycm,C =
M

(
l − l cos θ + 1

2 l cos θ
)

+m (l − l cos θ)

m+M
=
Ml

(
1− 1

2 cos θ
)

+ml (1− cos θ)

m+M

The change in center of mass height can now be found:

∆ycm = ycm,C − ycm,B =
Ml

(
1− 1

2 cos θ
)

+ml (1− cos θ)− 1
2Ml

m+M

=

1
2Ml (1− cos θ) +ml (1− cos θ)

m+M

= l

m+M
(1− cos θ)

(
m+ 1

2M
)

Using our previous energy balance between B and C,

L2

2I = (m+M) g∆ycm = lg (1− cos θ)
(
m+ 1

2M
)

We could also have found the change in potential energy a bit more easily by just separately considering the
change energy due to the change in height of the center of mass of the rod and the ball separately and adding
the two together. The putty changes height by l−l cos θ, while the rod’s center of mass changes height by
half that much.

∆Uball = mghball = mgl (1− cos θ) (1)

∆Urod = Mgrod, cm = Mg
l

2 (1− cos θ) (2)

∆Utot = ∆Uball + ∆Urod = gl (1− cos θ)
(
m+ 1

2M
)

(3)



Since the initial and final angular momenta are equal, we may substitute either Lf or Li, the latter being
the easiest option. This is not strictly necessary – we could use Lf or even just grind through 1

2Iω
2 and the

result must be the same. However, using Li here saves quite a bit of algebra in the end when we try to put
θ in terms of only given quantities. Doing so, and solving for θ

L2
f

2I = L2
i

2I = 2l2m2gh

2
( 1

3M +m
)
l2

= lg (1− cos θ)
(
m+ 1

2M
)

1− cos θ = m2h

l
( 1

3M +m
) ( 1

2M +m
)

θ = cos−1

[
1− m2h

l
( 1

3M +m
) ( 1

2M +m
)]

Note that for m = 0, θ = 0, as we expect. On the other hand, for M = 0 we have cos θ = 1 − h/l = 1/2.
This means that the particle is at a height l − l cos θ= l/2=h at point C – exactly what we would expect if
mechanical energy were conserved!

3. In the figure below, two balls of mass m are attached to the ends of a thin rod of length L and negligible
mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center.
With the rod initially horizontal, a wad of wet clay of mass M drops onto one of the balls, hitting it with
a speed of vi and then sticking to it. (a) What is the angular speed of the system just after the putty wad
hits? (b) What is the ratio of the kinetic energy of the system after the collision to that of the putty wad
just before? (c) Through what angle will the system rotate before it momentarily stops?

θ

l
m1

m2

vi

m2

Solution: Solution: (a) Our dumbbell, consisting of two masses m2 both a distance l from its center of
mass, is struck by a smaller mass m1 traveling at velocity ~vi. Conservation of angular momentum can be
used to find the angular velocity after the collision. Before the collision, with ı̂ to the right and ̂ upward,
we have the smaller mass’ momentum ~pi =−m1vi ̂ acting at a distance ~r= l ı̂ from the center of rotation.

~Li =~r× ~p = −m1lvi k̂

The minus sign indicates a clockwise rotation following our usual convention, which is sensible. After the
collision, the entire system rotates clockwise at angular velocity ~ω =−ω k̂. The total moment of inertia is
found easily, since we have only point-like masses:

I =
∑

i

mir
2
i = m2l

2 +m2l
2 +m1l

2 = l2 (2m2 +m1)

The final angular momentum is then



~Lf = I~ω = −l2ω (2m2 +m1) k̂

Conservation of angular momentum gives us

~ω = Li

I
= m1vi

(2m2 +m1) l k̂

(b) The initial kinetic energy of the system is only that of the smaller mass, Ki = 1
2m1v

2
i . The final kinetic

energy is the rotational kinetic energy of the whole system, which is simplified a bit in terms of angular
momentum

Kf = 1
2Iω

2 =
~L · ~L

2I = L2
i

2I = m2
1l

2v2
i

2l2 (2m2 +m1) = 1
2m1v

2
i

(
m1

2m2 +m1

)
= Ki

(
m1

2m2 +m1

)

Note that since angular momentum is conserved, we can use either Li or Lf in the kinetic energy equation;
using Li is somewhat simpler algebraically. The ratio of final to initial kinetic energies is thus

Kf

Ki
= m1

2m2 +m1

(c) What happens once the system starts rotating? Even without the initial kinetic energy of the smaller
mass, since all forces present after the collision are conservative the whole system would have enough energy
to rotate through 180◦, since that would put all of the masses back at the same height. The gravitational
potential energy of the system right after the collision is the same as that after rotating through 180◦, so
the system must rotate at least that much.

After rotating through 180◦, the total mechanical energy of the system is unchanged from the point right
after the collision. The system will continue rotating through a further maximum angle θ at which point
the gain in potential energy equals the kinetic energy right after the collision, Kf . As the system rotates,
one of the m2 masses will go up by an amount h= l sin θ, and the other m2 mass will go down by the same
amount. The only change in potential energy comes from the smaller m1 mass moving up by h! We can
balance mechanical energy between configurations right after the collision, after rotating through 180◦, and
after rotating through an additional angle θ. Let the initial horizontal axis of the dumbbell be the zero of
potential energy.

after collision: K + U = Kf

after rotating through 180◦: K + U = Kf

after an additional rotation by θ: K + U = m2gl sin θ +m1gl sin θ −m2gl sin θ = m1gl sin θ

conservation of mechanical energy =⇒ m1gl sin θ = Kf = m2
1v

2
i

2 (2m2 +m1)

sin θ = m1v
2
i

2gl (2m2 +m1)

θ = sin−1
[

m1v
2
i

2gl (2m2 +m1)

]



The total angle of rotation is thus 180◦ + θ.

4. Archimedes supposedly was asked to determine whether a crown made for the king consisted of pure
gold. Legend has it that he solved this problem by weighing the crown first in air and then in water. Suppose
the scale read 7.84N in air and 6.84N while submersed in water. What should Archimedes have told the
king? (Note: ρwater = 1000 kg/m3, ρgold = 19.3× 103 kg/m3

Solution: Weighed out of the water, the scale should read the gravitational force of the crown W , meaning
its density times volume times g.

W = ρsV g = 7.84N (4)

Weighed in the water, the scale will read the object’s weight minus the additional buoyant force B acting
upwards, which is itself equal to the object’s volume times the density of the fluid times g - the weight of
the displaced water.

W −B = ρsV g − ρlV g = V g (ρs − ρl) = 6.84N (5)

We can divide the two equations and solve for the apparent density of the crown ρs to see if it matches the
known density of gold.

ρs − ρl

ρs
= 6.84

7.84 (6)

6.84
7.84ρs = ρs − ρl (7)

ρs = ρl

1− 6.84
7.84

= 7840 kg/m3 (8)

The apparent density of the crown is far less than the expected value for gold, so the crown cannot be made
of pure gold. The apparent density is also far less than that of most metals known to the ancient Greeks,
like copper, iron, silver, lead, bronze, and brass. That means the crown can’t be a mix of any of these metals
with gold, since whatever one mixes with gold would have to have a smaller density than 7840 kg/m3 to come
up with this value of ρs overall. (Aluminum is far less dense (about 2700 kg/m3) but was not discovered
until 1825.) Of the metals known at the time, only tin at 7260 kg/m3 seems to have a sufficiently small
density to explain the result. It is plausible then that the crown is mostly tin with a thin coating of gold on
the outside.

5. Cylindrical pressure vessels are often reinforced by braided fibers, wound at a specific angle. For a thin-
walled pipe, two times of forces are crucial to the overall strength of the pipe: the forces trying to expand
the pipe in the radial direction, and those trying to elongate the pipe (in engineering parlance, we are talking
about hoop stresses and axial stressesii). (a) What is the relationship between the radial and axial forces,
per unit area? (b) The winding reinforces the pipe most effectively when the axial and radial components
of the tension in the fiber have the same ratio as the axial and radial forces. Given that constraint, what is
the optimal winding angle α?

6. The density of water is 1000 kg/m3, while that of ice is 916.7 kg/m3. If a block of ice is placed in water,
iiStress is just a generalization of pressure for solid objects, it is a force per unit area just like pressure. You may find the

following useful: http://en.wikipedia.org/wiki/Cylinder_stress.

http://en.wikipedia.org/wiki/Cylinder_stress


what volume fraction of the ice is below the surface?

Solution: Let the block of ice under consideration have an area A exposed to the water, with total thickness
in the vertical direction be d, with a thickness x below the water. We will assume that the ice is uniform
in the lateral directions, having the same thickness everywhere. There are two forces acting on the block of
ice: its weight pulling own, and the buoyant force of the displaced water pushing it upward. The former is
easy to find given the density of ice ρi and the volume of the block Ad:

W = mg = ρiAdg (9)

The buoyant force is due to the water displaced, and it is only the ice below the surface of volume Ax that
displaces any water. The buoyant force is the weight of the displaced water, and given a density ρw of water:

B = ρiAxg (10)

In equilibrium, the two forces must be equal:

W = ρiAdg = B = ρiAxg (11)

=⇒ x

d
= fraction below water = ρi

ρw
≈ 0.917 (12)

Thus, the old adage that nine tenths of an iceberg is underwater is basically correct.

7. Superman attempts to drink water through a very long straw. With his great strength, he achieves
maximum possible suction. The walls of the straw do not collapse. Find the maximum height through which
he can lift the water.

Solution: Let’s say Superman reduces the pressure inside the straw to some value Po compared to the
outside atmosphere of pressure Pa. The net force on a column of water of cross-sectional area A would then
be (Pa − Po)A. If this force is to lift the column of liquid through a height h, it must be equal to the weight
of a column of said liquid of area A and height h.

net suction force = (Pa − Po)A (13)

weight of water pulled up = ρhAg (14)

What is the best Superman could do? He could reduce the pressure in the straw to zero. There is no lower
pressure! In this case, Po =0, equating the two forces gives:

PaA = ρhAg (15)

h = P

ρg
≈ 10.3m (16)

The best he can do is to cause the atmospheric pressure Pa to push up on the water with all its might, but no
more. The power of suction is fundamentally limited by the surrounding pressure, Superman or otherwise.

8. Viscosity of most liquids can be represented by an extra “drag" force on a body moving in a liquid, which



is reasonably well approximated by Fdrag = 6πηRv, where v is the velocity of the body, η is the viscosity
parameter of the fluid, and R is a characteristic dimension of the falling object (the radius, in the case of a
sphere). The presence of viscosity leads to a “terminal velocity" of a body falling in a liquid.

Consider a sphere of radius R and density ρs falling through a liquid of density ρl and viscosity parameter
η. Including this new drag force, the buoyant force, and the weight of the object, find an expression for the
terminal velocity of the sphere.

Solution: Terminal velocity is when the the object in question reaches a constant maximum velocity, which
must be when the net force on the object is zero. Physically, the object’s speed has become so high, and the
corresponding drag force so great that it manages to balance the object’s weight and any other forces. The
weight of a sphere of radius R and density ρs is

Fw = 4
3πR

3ρsg (17)

If we are in a surrounding fluid of density ρ, we must also account for the buoyant force, equal to the weight
of the displaced fluid. This is the same as the expression above if we substitute ρs → ρ

B = 4
3πR

3ρg (18)

The drag and buoyant forces will act in one direction, the weight of the object opposing them. A force
balance yields, at terminal velocity,

0 = Fd +B − Fw (19)

0 = 6πηRv + 4
3πR

3ρg − 4
3πR

3ρsg (20)

6πηRv = 4
3πR

3 (ρs − ρ) g (21)

v = 2g
9ηR

2 (ρs − ρ) (22)

The fact that terminal velocity depends on particle size has many interesting technological applications. (As
a quick for-instance: http://en.wikipedia.org/wiki/Fluidized_bed_reactor.)

http://en.wikipedia.org/wiki/Fluidized_bed_reactor

