University of Alabama

Department of Physics and Astronomy
PH I25 / LeClair
January 15, 2009

Quiz 2: Solutions

You have two vectors:

$$
\overrightarrow{\mathbf{a}}=1 \hat{\imath}+2 \hat{\boldsymbol{\jmath}}+3 \hat{\mathbf{k}} \quad \text { and } \quad \overrightarrow{\mathbf{b}}=3 \hat{\imath}+6 \hat{\boldsymbol{\jmath}}+9 \hat{\mathbf{k}}
$$

I. Find the scalar product of the two vectors, $\vec{a} \cdot \vec{b}$

First, remember that the way we have written the vectors above is in component form:

$$
\overrightarrow{\mathbf{a}}=a_{x} \hat{\mathbf{\imath}}+a_{y} \hat{\boldsymbol{\jmath}}+a_{z} \hat{\mathbf{k}}
$$

where it is clear then that $a_{x}=1, a_{y}=2$, etc. The scalar product is then readily calculated with the formulas we derived:

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=3+12+27=42
$$

2. Find the vector product of the two vectors, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$

There are two ways to do this one: the hard way, and the easy way.
The hard way makes use of the vector product formula we derived earlier. It is a bit more complex, but easily remembered as the determinant of a 3×3 matrix:

$$
\begin{aligned}
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} & =\left|\begin{array}{ccc}
\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\mathbf{k}} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|=\left|\begin{array}{ll}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end{array}\right| \hat{\boldsymbol{\imath}}-\left|\begin{array}{ll}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right| \hat{\boldsymbol{\jmath}}+\left|\begin{array}{cc}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right| \hat{\mathbf{k}} \\
& =\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{\boldsymbol{\imath}}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \hat{\boldsymbol{\jmath}}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{\mathbf{k}}
\end{aligned}
$$

Evaluating this with the given components,

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=(18-18) \hat{\imath}+(9-9) \hat{\boldsymbol{\jmath}}+(6-6) \hat{\boldsymbol{\jmath}}=0
$$

The easy way? We first notice that the vector \vec{b} is just thrice the vector \vec{a}, and remember that scalar multiplication is distributive:

$$
\overrightarrow{\mathbf{b}}=3 \hat{\imath}+6 \hat{\boldsymbol{\jmath}}+9 \hat{\mathbf{k}}=3(1 \hat{\imath}+2 \hat{\boldsymbol{\jmath}}+3 \hat{\mathbf{k}})=3 \overrightarrow{\mathbf{a}}
$$

Scalar multiplication does not change the orientation of the vector, just its magnitude, so $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ must be parallel, which means their cross product is zero.

