University of Alabama
 Department of Physics and Astronomy

PH 125 / LeClair
January 20, 2009

Quiz 3: Solution

I. A projectile is launched on level ground with a velocity of $\overrightarrow{\mathbf{v}}_{i}=3.00 \hat{\imath}+4.00 \hat{\boldsymbol{\jmath}}$. What is the launch angle θ_{i}, relative to the x axis?

The angle of launch relative to the x axis is just the angle the velocity vector $\overrightarrow{\mathbf{v}}_{i}$ makes with the x axis. For a generic vector \vec{a} expressed in cartesian coordinates,

$$
\overrightarrow{\mathbf{a}}=a_{x} \hat{\boldsymbol{\imath}}+a_{y} \hat{\boldsymbol{\jmath}}
$$

the angle $\overrightarrow{\mathbf{a}}$ makes with the x axis is given by

$$
\tan \theta=\frac{a_{y}}{a_{x}}
$$

In this case, we have $v_{y}=4.00$ and $v_{x}=3.00$, and thus

$$
\theta=\tan ^{-1}\left[\frac{v_{y}}{v_{x}}\right]=\tan ^{-1}\left[\frac{4.00}{3.00}\right] \approx 53.1^{\circ}
$$

2. A particle has a trajectory that follows $\overrightarrow{\mathbf{r}}=(3.2 \hat{\boldsymbol{\imath}}+1.5 \hat{\boldsymbol{\jmath}}) t+\frac{1}{2}(4.9 \hat{\boldsymbol{\imath}}+9.8 \hat{\boldsymbol{\jmath}}) t^{2}$, where t is in seconds, and r is in meters. What is the velocity in the y direction at $t=17.2 \mathrm{~s}$?

The velocity vector can be found by differentiating $\overrightarrow{\mathbf{r}}$ with respect to t :

$$
\overrightarrow{\mathbf{v}}=\frac{d \overrightarrow{\mathbf{r}}}{d t}=\frac{d}{d t}\left[(3.2 \hat{\boldsymbol{\imath}}+1.5 \hat{\boldsymbol{\jmath}}) t+\frac{1}{2}(4.9 \hat{\boldsymbol{\imath}}+9.8 \hat{\boldsymbol{\jmath}}) t^{2}\right]=[3.2 \hat{\boldsymbol{\imath}}+1.5 \hat{\boldsymbol{\jmath}}]+[4.9 \hat{\boldsymbol{\imath}}+9.8 \hat{\boldsymbol{\jmath}}] t
$$

We want only the y component (the $\hat{\jmath}$ part), so we first collect like terms:

$$
\overrightarrow{\mathbf{v}}=[3.2+4.9 t] \hat{\boldsymbol{\imath}}+[1.5+9.8 t] \hat{\boldsymbol{\jmath}}
$$

This immediately gives us the y component of the velocity v_{y} just by inspection (or by finding $\overrightarrow{\mathbf{v}} \cdot \hat{\boldsymbol{j}}$):

$$
v_{y}=1.5+9.8 t
$$

Finally, we are asked to find v_{y} at $t=17.2 \mathrm{~s}$:

$$
v_{y}(17.2 \mathrm{~s})=1.5+9.8(17.2) \approx 170 \mathrm{~m} / \mathrm{s}
$$

You should verify for yourself that the units work out correctly in this case ©

