UNIVERSITY OF ALABAMA Department of Physics and Astronomy

PH 125 / LeClair

January 20, 2009

Quiz 3: Solution

1. A projectile is launched on level ground with a velocity of $\vec{\mathbf{v}}_i = 3.00 \,\hat{\imath} + 4.00 \,\hat{\jmath}$. What is the launch angle θ_i , relative to the x axis?

The angle of launch relative to the x axis is just the angle the velocity vector $\vec{\mathbf{v}}_i$ makes with the x axis. For a generic vector $\vec{\mathbf{a}}$ expressed in cartesian coordinates,

 $\vec{\mathbf{a}} = a_x \, \hat{\boldsymbol{\imath}} + a_y \, \hat{\boldsymbol{\jmath}}$

the angle \vec{a} makes with the x axis is given by

$$\tan \theta = \frac{a_y}{a_x}$$

In this case, we have $v_y = 4.00$ and $v_x = 3.00$, and thus

$$\theta = \tan^{-1} \left[\frac{v_y}{v_x} \right] = \tan^{-1} \left[\frac{4.00}{3.00} \right] \approx 53.1^{\circ}$$

2. A particle has a trajectory that follows $\vec{\mathbf{r}} = (3.2\,\hat{\imath} + 1.5\,\hat{\jmath})t + \frac{1}{2}(4.9\,\hat{\imath} + 9.8\,\hat{\jmath})t^2$, where t is in seconds, and r is in meters. What is the velocity in the y direction at $t = 17.2\,\text{s}$?

The velocity vector can be found by differentiating $\vec{\mathbf{r}}$ with respect to t:

$$\vec{\mathbf{v}} = \frac{d\vec{\mathbf{r}}}{dt} = \frac{d}{dt} \left[(3.2\,\hat{\imath} + 1.5\,\hat{\jmath})t + \frac{1}{2} (4.9\,\hat{\imath} + 9.8\,\hat{\jmath})t^2 \right] = [3.2\,\hat{\imath} + 1.5\,\hat{\jmath}] + [4.9\,\hat{\imath} + 9.8\,\hat{\jmath}]t$$

We want only the y component (the \hat{j} part), so we first collect like terms:

$$\vec{\mathbf{v}} = [3.2 + 4.9t] \,\,\hat{\imath} + [1.5 + 9.8t] \,\,\hat{\jmath}$$

This immediately gives us the y component of the velocity v_y just by inspection (or by finding $\vec{\mathbf{v}} \cdot \hat{\boldsymbol{j}}$):

$$v_y = 1.5 + 9.8t$$

Finally, we are asked to find v_y at t = 17.2 s:

$$v_y(17.2 \text{ s}) = 1.5 + 9.8 (17.2) \approx 170 \text{ m/s}$$

You should verify for yourself that the units work out correctly in this case ©