Name \qquad

PH I $_{5}$ Quiz s: Its not Work if you do it right $^{\text {Q }}$

$$
W=\int_{r_{i}}^{r_{f}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \mathbf{\vec { r }}=\int_{x_{i}}^{x_{f}} F_{x} \cdot \mathrm{~d} x \quad \Sigma W=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
$$

I. The magnitude of the force on a spring as a function of its displacement from equilibrium $(x=0)$ can be written $F=-k x$, where k is the "force constant" of the spring. What is the amount of work done in stretching the spring from $x=0$ to $x=x_{f}$?

We need only integrate the force through the displacement. If the displacement is purely along the x axis from $x=0$ to x_{f}, we can write an incremental displacement as $d \overrightarrow{\mathbf{x}}=d x \hat{\boldsymbol{\imath}}$, whereas the force can be written $\overrightarrow{\mathbf{F}}=-k x \hat{\boldsymbol{\imath}}$, acting in the opposite direction as the displacement.

$$
W=\int_{0}^{x_{f}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{x}}=\int_{0}^{x_{f}}(-k x \hat{\boldsymbol{\imath}}) \cdot(d x \hat{\boldsymbol{\imath}})=\int_{0}^{x_{f}}-k x d x=\left[-\frac{1}{2} k x^{2}\right]_{0}^{x_{f}}=-\frac{1}{2} k x_{f}^{2}
$$

2. What is the work done when a 3 kg object free-falls 1 m straight down, relative to the earth's surface? You can neglect air resistance, and let $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

The work done by gravity is just the net vertical displacement times the object's weight:

$$
W_{g}=m g \Delta y=(3 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(1 \mathrm{~m})=30 \mathrm{~J}
$$

3. If you did not ignore air resistance in question 2 , which of the following would be true?

- The work done would be more, work is done against air resistance and gravity.
- The work done would be less, air resistance is countering work by gravity.
- The work done would be the same, the force of air resistance does no work.
- Cannot be determined without knowing the precise nature of the force of air resistance.

The work done by gravity is exactly the same, since the force of gravity itself does not change and neither does the total distance fallen.

A more formal answer would be that air resistance doesn't do any work, since it is not a force acting through a point of displacement, but a force acting over the whole object itself. We'll get in to that.

