University of Alabama

Department of Physics and Astronomy
PH 125 / LeClair
February 13, 2009

Quiz 7

Instructions:

I. Answer all three questions below. Both have equal weight.
2. Express your answer with the appropriate units and significant digits
3. Show your work for full credit.
I. A particle of mass $m=2 \mathrm{~kg}$ experiences a spatially varying potential energy $U(x)=\frac{-2}{x}+\frac{1}{x^{2}}$, where x is in meters and U is in Joules. In other words, $U(x)$ is the sum total potential energy of the particle (from all sources) for any position x. What is the stable equilibrium position of the particle? Recall that $F=-\frac{d U}{d x}$.
2. An object of mass m is attached to a spring hung vertically from the ceiling. After attaching the mass m, the spring stretches a distance d from its former equilibrium. If $m=0.55 \mathrm{~kg}$ and $d=2 \mathrm{~cm}$, what is the force constant of the spring?
3. Consider the potential energy versus position diagram $U(x)$ below. An particle of mass 0.1 kg subjected to this potential energy function has a total energy of 1 J . What is (roughly) its maximum possible displacement? You may assume perfect conservation of potential + kinetic energy.

