UNIVERSITY OF ALABAMA Department of Physics and Astronomy

PH 125 / LeClair Spring 2009

Quiz 9: Temperature, Heat, & Thermodynamics

$$Q=cm\Delta T$$
 $c_{\rm ice}=2.22\,{\rm kJ/kg\cdot K}$ $Q=Lm$ phase change $c_{
m water}=4.19\,{\rm kJ/kg\cdot K}$ $T[K]=T[C]-273.15$ $L_{F,{
m ice}}=333\,{\rm kJ/kg}$

- r. How much heat must be absorbed by ice of mass $m=0.72\,\mathrm{kg}$ at $T_i=-20\,^{\circ}\mathrm{C}$ to bring it to a liquid state at $T_f=15\,^{\circ}\mathrm{C}$?
 - □ 317 kJ
 - □ 187 kJ
 - □ 207 kJ
 - □ 97 kJ
- 2. In the previous question, which step in the melting and heating process requires the greatest heat input?
 - warming the ice
 - melting the ice
 - warming the liquid
- 3. In the previous question, which step in the melting and heating process requires the *smallest* heat input?
 - warming the ice
 - melting the ice
 - warming the liquid
- 4. A $0.050 \,\mathrm{kg}$ ingot of metal is heated to 200°C and dropped into a beaker containing $0.400 \,\mathrm{kg}$ of water initially at 20.0°C. If the final equilibrium temperature is 22.4°C, what is the specific heat c of the metal? Ignore heat transferred to the beaker and boil-off of the water. Assume the system is isolated. (Note: $c_{\mathrm{water}} = 4186 \,\mathrm{J/kg \cdot K.}$)
 - □ 279 J/kg·°C
 - □ 148 J/kg·°C
 - □ 721 J/kg·°C
 - □ 453 J/kg·°C
- 5. The temperature of a silver bar rises by 10° C when it absorbs $1.23 \, \text{kJ}$ of energy by heat. The mass of the bar is $525 \, \text{g}$. Determine the specific heat c of silver.
 - □ 234 J/kg· K
 - □ 1240 J/kg· K
 - □ 1.95 J/kg· K
 - □ 8820 J/kg· K