
PH126 Exam I Solutions
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2 1. Four positively charged bodies, two with charge Q and two with charge q, are connected by four
unstretchable strings of equal length. In the absence of external forces they assume the equilibrium con-
figuration shown in the diagram.

Show that tan3 θ=q2/Q2.

Note: This can be done in two ways. You could show that this relation must hold if the total force on
each body, the vector sum of string tension and electrical repulsion, is zero. Or you could write out the
expression for the energy U of the assembly and minimize it.

Energy-based approach. Let the length of the strings connecting adjacent Q and q charges be d. Call the
distance between the two Q charges horizontally l, and the vertical distance between the two q charges
h. Using trigonometry, then:

cos θ =
l/2
d

=
l

2d

sin θ =
h/2
d

=
h

2d

The total potential energy of this system can be found by adding the potential energies of all unique pairs
of charges, recalling that for a pair of point charges q1 and q2 separated by a distance r12 the potential
energy is keq1q2/r12. We also note that there are four equivalent pairings of the q and Q charges, all
separated by a distance d.

U =
keQ2

l
+

keq2

h
+ 4

keQq

d

=
keQ2

2d cos θ
+

keq2

2d sin θ
+ 4

keQq

d

Now we have the potential energy of the entire system as a function of the angle θ. Notice that the last
term - the potential energy due to the charges fixed by the string - does not depend on θ, since the distance
between adjacent q and Q charges is fixed by the length of the string.
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At equilibrium, this potential energy should be at a minimum with respect to any angular variation. If
U(θ) should be at a minimum, we must have dU/dθ = 0:

dU

dθ
=

d

dθ

[
keQ2

2d cos θ
+

keq2

2d sin θ
+ 4

keQq

d

]
= 0

dU

dθ
=

keQ2

d

sin θ

2 cos2 θ
−

keq2

d

cos θ

2 sin2 θ
= 0

Solving the equation above,

keQ2

d

sin θ

2 cos2 θ
=

keq2

d

cos θ

2 sin2 θ

Q2 sin θ

2 cos2 θ
= q2 cos θ

2 sin2 θ

q2

Q2
=

sin3 θ

cos3 θ
= tan3 θ

Now, we have forgotten to be careful about one thing: is this a maximum, a minimum, or an inflection
point? Setting dU/dθ = 0 only ensures we have found one of the three; recall from Calculus I which one
it is depends on the sign of d2U/dθ2. One can argue on physical grounds that it must be a minimum,
but mathematically one must show that d2U/dθ2 > 0 to be certain.

Finding the second derivative of U(θ) is rather messy; you should find something like this once you grind
through it:

d2U

dθ2
=

d

dθ

dU

dθ
=

ke

2d

(
Q2

cos θ
+

q2

sin θ

)
For the present problem, the angle θ can only be between 0 and 90◦ without breaking the strings. The
equation above is positive over that entire range of angles (though singular at the endpoints 0 and 90◦),
which means that d2U/dθ2 > 0 for any physically possible choice of θ, and we have indeed found a min-
imum of potential energy, rather than a maximum or inflection point. Thus, our condition represents a
stable situation.

Force-based approach. First, refer to the figure below, where we have drawn a simple free-body diagram
about one of the q charges, and one of the Q charges.

We will call the force between adjacent Q and q charges FqQ, the force between two q charges Fqq, the
force between two Q charges FQQ, and finally, the tension in the strings is T . All four strings must have
the same tension, based on the symmetry of the system and Newton’s third law. Since we know the
distances between the charges (see above), we already know the electrostatic forces involved:
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Figure 1: Problem 3: free-body diagram

FQQ =
keQ2

4d2 cos2 θ

Fqq =
keq2

4d2 sin2 θ

FqQ =
keQq

d2

Next, focus on one of the q charges. We will pick the uppermost one just to be concrete. As indicated in
the free body diagram above, there will be two repulsive FqQ forces from the two adjacent Q charges, and
these forces will be directed at an angle θ above the indicated x axis. The string tensions will act opposite
these two repulsive forces. At equilibrium, all forces must sum to zero. Summing the forces along the x

and y axes, we have:

on q charge:
∑

Fx = FqQ cos θ − FqQ cos θ + T cos θ − T cos θ = 0∑
Fy = 2FqQ sin θ − 2T sin θ + Fqq = 0

The forces in the x direction give us nothing useful, but those in the y direction do. Plugging in our
expressions for the forces:

2keQq

d2
sin θ − 2T sin θ +

keq2

4d2 sin2 θ
= 0 (1)

This looks useful, but it is not enough. We must eliminate the tension T , and the only way to get enough
equations to do so is to also perform a force balance around one of the Q charges. Pick the rightmost
one:

on Q charge:
∑

Fx = FQQ + 2FqQ cos θ − 2T cos θ∑
Fy = FqQ sin θ − FqQ sin θ + T sin θ − T sin θ = 0

This time, the y force balance is useless, but the x force balance gives us another interesting equation.
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Again, plugging in our expressions for the forces:

keQ2

4d2 cos2 θ
+

2keQq

d2
cos θ − 2T cos θ = 0 (2)

Now: compare equations (1) and (2). We can solve both equations for 2T , and eliminate the tensions
entirely:

2T =
2keQq

d2
+

keq2

4d2 sin3 θ
from (1)

2T =
2keQq

d2
+

keQ2

4d2 cos3 θ
from (2)

=⇒ keq2

4d2 sin3 θ
=

keQ2

4d2 cos3 θ

q2

Q2
=

sin3 θ

cos3 θ
= tan3 θ

Thus, as it must, the force-based approach yields the same answer as the energy-based approach.
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2 2. An electric dipole in a uniform electric field E is displaced slightly from its equilibrium position, as
shown above. The angle between the dipole axis and the electric field is θ (you may assume θ is small).
The separation of the charges is 2a, and the moment of inertia of the dipole is I.

Assuming the dipole is released from this position, show that its angular orientation exhibits simple
harmonic motion with a frequency

f =
1
2π

√
2qaE

I

Define the positive x axis to be in the direction of the electric field, and the positive y axis perpendicular
to it in the upward direction. This means the z axis points out of the page for a right-handed coordinate
system.

On the +q charge, there will be force F+ = qE along x̂, and on the −q charge, a force F− = −qE (along
−ŷ). Both of these forces will try to cause the dipole to rotate and orient itself along the electric field;
that is, both will result in a clockwise torque about the center of the dipole. The sum of these torques
must equal the dipole’s moment of inertia I times the resulting angular acceleration α. Let the position
of the +q charge be defined by a vector ~r + whose origin is at the dipole center, and similarly ~r − will
give the position of the −q charge. We also define a unit vector r̂ pointing from the −q to the +q charge.
Finally, remember that a clockwise rotation defines a negative torque - this is the version of the right-hand
rule for torques.i

∑
~τ =

(
~r + × ~F +

)
+
(
~r − × ~F −

)
= qEa r̂× x̂ + (−qE) (−r̂× x̂)

= qEa (−ẑ sin θ) + qEa (−ẑ sin θ) = −2qaE sin θ ẑ = I~α∑
|~τ | = −2qEa sin θ = I|~α |

We could have avoided the vector baggage right off the bat, if we just chose the resultant torque to be
negative based on the right-hand rule. In order to show simple harmonic motion, we need to show in
this case that α = −ω2θ. Recalling the definition of α, we have:

iWe have to pick the sign because ~τ , resulting from a cross-product, is a pseudovector.
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Iα = I
d2θ

dt2
= −2qEa sin θ

If the angle θ is small, we can approximate sin θ by the first term in its Taylor expansion (a “first-order”
approximation):

Taylor expansion sin θ =

∞∑
n=0

(−1)n

(2n + 1)!
θ2n+1 = θ −

θ3

3!
+

θ5

5!
− . . .

small θ : sin θ ≈ θ

Using this approximation,

I
d2θ

dt2
≈ −2qEaθ or

d2θ

dt2
≈ −

2qEa

I
θ

This is our beloved differential equation for simple harmonic motion, viz., d2θ
dt2 = −ω2θ, and thus for

small θ,

ω ≈
√

2qaE

I
or f ≈ 1

2π

√
2qaE

I

z

x+Q−2Q

d

P(!r)

!r

θ

2 3. The charge distribution shown above is not quite a dipole, but may be considered to be the superpo-
sition of a dipole and a monopole.

(a) Find an approximate form for the potential at a point P(~r ) far from the charges (d�x, z) in terms of
the radial distance r and angle θ. You may treat the problem in two dimensions if you wish.
(b) Find an approximate form for the electric field at P.

Note: you may find the following approximation useful: (1 + x)n ≈ 1 + nx. See the last exam sheet for
formulas relating to spherical coordinates . . .
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One thing to recognize right off the bat is that this charge distribution is equivalent to a dipole plus one
extra negative charge at the origin:

+Q−2Q

d

= +

+Q

d

−Q −Q

Figure 2: Our charge distribution is equivalent to a dipole plus a point charge.

Thus, the solution to our problem is our usual dipole potential plus the potential of a point charge. First,
let’s consider the dipole alone, and we can add the point charge in later. We can readily write down the
potential for the dipole at the point P – it is just a superposition of the potential due to each of the charges
alone. We’ll work in two dimensions, so long as we have the option.

Vdipole(x, z) = ke

 q√
(x − d)2 + z2

+
−q√

x2 + z2

 (3)

Since we are assuming r � d, we simplify the denominator in the first term a bit, remembering that
r2 =x2 + y2:

1√
(x − d)2 + y2 + z2

=
1√

x2 − 2xd + d2 + z2
=

1√
x2 + z2

1√
1 − 2xd√

x2+z2
+ d2√

x2+z2

=
1
r

1
1 − 2xd/r2 + d2/r2

≈ 1
r

1√
1 − 2xd/r2

≈ 1
r

(
1 +

xd

r2

)
(4)

Here we used the given (binomial) approximation once again in the very last step. Substituting this in to
our expression for the dipole potential above,

Vdipole(x, z) ≈ keq

r

(
1 +

xd

r2

)
−

keq

r
=

keq

r

xd

r2
=

keqd cos θ

r2
(5)

In the last step, we noted that x/r=cos θ, using the angle as given in the figure. This is the potential due
to the dipole alone; for the full problem, we need only add in the potential due to a charge −q at the
origin:

Vtot(x, z) ≈ Vdipole(x, z) + V−q(x, z) =
keqd cos θ

r2
−

keq

r
=

keq

r

(
d cos θ

r
− 1
)

(6)

The field is no problem at all, remembering that ~E = − ~∇V (and that we are in spherical coordinates).
First, the radial part:
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Er = −
dV

dr
r̂ ≈ 2keqd cos θ

r3
r̂ −

keq

r2
r̂ =

keq

r2

(
2d cos θ

r
− 1
)

r̂ (7)

Next, the angular part:

Eθ = −
1
r

dV

dθ
θ̂ ≈ keqd sin θ

r3
θ̂ (8)

In total,

~E ≈ keq

r2

(
2d cos θ r̂

r
− r̂ +

d sin θ θ̂

r

)
=

keqd

r3

(
2 cos θ r̂ + sin θ θ̂

)
−

keq

r2
r̂ (9)

Just like the potential, the field is the superposition of a dipole and a single point charge −q.

2 4. A sphere of radius R carries a charge density ρ(r)=cr, where c is a constant.

(a) Find the total charge Q contained in the sphere.
(b) Find the electric field everywhere.
(c) Find the energy of the configuration.

Note: there are two straightforward ways for the last part: from the energy in the electric field everywhere,
and from the potential over the charge distribution.

The total charge is found by integrating the charge density through the volume of the sphere. Remem-
bering to use the differential volume element in spherical coordinates,

Qtot =

π∫
0

dθ

2π∫
0

dϕ

R∫
0

ρ(r) r2 sin θ drdθ dϕ =

π∫
0

dθ

2π∫
0

dϕ

R∫
0

cr r2 sin θ drdθ dϕ

= 4πc

R∫
0

r3 dr =

[
4πc

r4

4

] ∣∣∣∣R
0

= πcR4 (10)

The charge distribution is spherically symmetric (ρ does not depend on θ or ϕ), so for r > R the field
looks like that of a point charge of magnitude Qtot:

~E =
kQtot

r2
r̂ =

kπcR4

r2
r̂ =

cR4

4εor2
(r > R) (11)

For points inside the sphere, r < R, we need only worry about the charge contained within a sphere of
radius r, which can be found from the integral above if we replace the upper limit with r instead of R.

~E =
kQ(r)

r2
r̂ =

kπcr4

r2
r̂ = kπcr2 r̂ =

cr2

4εo
r̂ (r 6 R) (12)
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Once we have the electric field everywhere, the easiest way to find the energy is to integrate the square of
the electric field everywhere. We’ll have to break this up into two integrals: one for radii less than R and
one for radii greater than R, since the field is different in these two regions.

Ufield =
εo

2

∫
E2 dτ (13)

=
εo

2

π∫
0

dθ

2π∫
0

dϕ

R∫
0

(
cr2

4εo
r̂

)
·
(

cr2

4εo
r̂

)
r2 sin θ drdθ dϕ (14)

+
εo

2

π∫
0

dθ

2π∫
0

dϕ

∞∫
R

(
cR4

4εor2
r̂

)
·
(

cR4

4εor2
r̂

)
r2 sin θ drdθ dϕ (15)

=
εo

2

π∫
0

sin θ dθ

2π∫
0

dϕ

R∫
0

c2r6

16ε2
o

dr +
εo

2

π∫
0

sin θ dθ

2π∫
0

dϕ

∞∫
R

c2R8

16ε2
or2

dr (16)

=
c2π

8εo

[
r7

7

] ∣∣∣∣R
0

+
c2πR8

8εo

[
−1
r

] ∣∣∣∣∞
R

(17)

=
c2π

8εo

(
R7

7
+ R7

)
=

c2πR7

7ε0
(18)

We could also find the energy of the system by integrating the potential times charge density through the
volume of the sphere:

Ufield =
1
2

∫
ρV dτ (19)

Since the integrand is non-zero only in the region where we have charge density – i.e., for r<R – we only
need the potential over that region as well. We can get the potential V from ~E readily by integration.
In order to find the potential at a distance r from the center of the sphere (still with r < R), we’ll need
to integrate ~E · d~l from infinity down to r, as if we are brining in the charge to build up the sphere bit
by bit. Since ~E is conservative, we can integrate over any path we like, so we may as well make it a nice
radial path, r̂ dr. As with our previous calculation, we’ll have to break the integral up into two regions,
one outside the sphere, and one within the sphere, since the fields are different in those two regions.

V(r) = −

r∫
∞

~E · d~l = −

r∫
∞

~E · r̂ dr =

R∫
∞

cR4

4εor2
dr −

r∫
R

cr2

4εo
dr

=
cR4

4εo

[
1
r

] ∣∣∣∣R∞−
c

4εo

[
r3

3

] ∣∣∣∣r
R

=
cR3

3εo
−

cr3

12εo
+

cR3

12εo
=

4cR3

12εo
−

cr3

12εo
=

c

3εo

(
R3 −

r3

4

)
(20)

Once we have the potential as a function of r, we can integrate ρV through the volume of the sphere to
find the energy:
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Ufield =
1
2

∫
ρV dτ =

1
2

π∫
0

dθ

2π∫
0

dϕ

R∫
0

cr

(
c

3εo

)(
R3 −

r3

4

)
r2 sin θ drdθ dϕ (21)

=
4πc2

6εo

[
R3r4

4
−

r7

28

] ∣∣∣∣R
0

=
2πc2

3εo

[
R7

4
−

R7

28

]
=

πc2R7

7εo
(22)

As it must be, the potential and field methods yield the same result. In my opinion, the field method is
somewhat easier in this case, particularly since you were already asked to find the field in the previous
part. Still, there is always more than one way to do a problem.
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