PHi26 Exam II

Instructions

I. Solve three of the six problems below. All problems have equal weight.
2. Clearly mark your which problems you have chosen using the tick box.
3. You are allowed I sheet of standard 8.5×1 in paper and a calculator.

- I. Find the magnetic field at point P for the steady current configuration above.

- 2. Find the magnetic field at point P for the steady current configuration above, in which a long wire is bent into a hairpin shape. The point P lies at the center of the half-circle.

- 3. In the circuit above, all five resistors have the same value, 100Ω, and each battery has a rated voltage of 1.5 V and no internal resistance. Find the open-circuit voltage and the short-circuit current for the terminals A, B. Then find the Thèvenin equivalent circuit (i.e., the ideal battery and resistor that could replace this circuit between terminals A, B.)
- 4. A wire carrying current I runs down the y axis and to the origin, thence out to infinity along the positive x axis. Show that the magnetic field in the quadrant $x>0, y>0$ of the $x y$ plane is given by

$$
\mathrm{B}_{z}=\frac{\mu_{\mathrm{o}} \mathrm{I}}{4 \pi}\left(\frac{1}{x}+\frac{1}{y}+\frac{x}{y \sqrt{x^{2}+y^{2}}}+\frac{y}{x \sqrt{x^{2}+y^{2}}}\right)
$$

5. In the circuit below, determine the current in each resistor and the voltage across the 200Ω resistor.

6. You are given two batteries, one of 9 V and internal resistance 0.50Ω, and another of 3 V and internal resistance 0.40Ω. How must these batteries be connected to give the largest possible current through an external 0.30Ω resistor? What is this current?

Constants：

$$
\begin{aligned}
\mathrm{k}_{\mathrm{e}} & \equiv 1 / 4 \pi \epsilon_{\mathrm{o}}=8.98755 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2} \\
\epsilon_{\mathrm{o}} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\
\mu_{\mathrm{o}} & \equiv 4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
\mathrm{c}^{2} & =1 / \mu_{\mathrm{o}} \epsilon_{\mathrm{o}} \\
\mathrm{e} & =1.60218 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

Basic Equations／Mechanics：

$$
0=a x^{2}+b x^{2}+c \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\overrightarrow{\mathrm{F}}_{\text {centr }}=-\frac{m v^{2}}{\mathrm{r}} \hat{\mathbf{r}} \text { Centripetal }
$$

Electric Force \＆Field（static case）：

$$
\begin{aligned}
\overrightarrow{\mathrm{F}}_{12} & =\mathrm{k}_{\mathrm{e}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}^{2}} \hat{\mathbf{r}}_{12}=\mathrm{q}_{2} \overrightarrow{\mathrm{E}}_{1} \quad \overrightarrow{\mathrm{r}}_{12}=\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2} \\
\overrightarrow{\mathrm{E}}_{1} & =\overrightarrow{\mathrm{F}}_{12} / \mathrm{q}_{2}=\mathrm{k}_{\mathrm{e}} \frac{\mathrm{q}_{1}}{\mathrm{r}_{12}^{2}} \hat{\mathrm{r}}_{12} \\
\overrightarrow{\mathrm{E}} & =\mathrm{k}_{\mathrm{e}} \sum_{\mathrm{i}} \frac{q_{i}}{\mathrm{r}_{i}^{2}} \hat{r}_{i} \rightarrow \mathrm{k}_{\mathrm{e}} \int \frac{\mathrm{dq}}{\mathrm{r}^{2}} \hat{\mathbf{r}}=\mathrm{k}_{\mathrm{e}} \int_{V} \frac{\rho \hat{\mathrm{r}}}{\mathrm{r}^{2}} \mathrm{~d} \mathrm{\tau} \\
\rho \mathrm{~d} \tau & \rightarrow \sigma \mathrm{da} \rightarrow \lambda d l \\
\vec{\nabla} \cdot \overrightarrow{\mathrm{E}} & =\rho / \epsilon_{\mathrm{o}} \quad \overrightarrow{\mathrm{E}}=-\vec{\nabla} V
\end{aligned}
$$

Electric Potential（static case）：

$$
\begin{aligned}
\Delta V & =V_{B}-V_{A}=\frac{\Delta U}{q}=-\int_{A}^{B} \vec{E} \cdot d \vec{l} \\
V_{\text {point }} & =k_{e} \frac{q}{r} \rightarrow V_{\text {continuous }}=k_{e} \int \frac{d q}{r}=k_{e} \int \frac{\rho}{r} d \tau \\
U_{\text {pair of point charges }} & =k_{e} \frac{q_{1} q_{2}}{r_{12}}=V_{1} q_{2}=V_{2} q_{1} \\
U_{\text {system }} & =\text { sum over unique pairs }=\sum_{\text {pairs } i j} \frac{k_{e} q_{i} q_{j}}{r_{i j}} \rightarrow \frac{1}{2} \int \rho V d \tau \\
U_{\text {field }} & =\frac{\epsilon_{o}}{2} \int E^{2} d \tau=\frac{1}{2} \int \rho V d \tau
\end{aligned}
$$

Current \＆Resistance：

$$
\begin{aligned}
& \mathrm{I}=\int_{\mathrm{S}} \overrightarrow{\mathrm{~J}} \cdot \mathrm{~d} \vec{A} \xrightarrow{\text { uniform } J} \mathrm{I}=\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{nqA} v_{\mathrm{d}} \\
& \mathrm{~J}=\sum_{\mathrm{k}} \mathrm{n}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}} \nu_{\mathrm{k}} \xrightarrow{\text { uniform } \mathrm{J}} \mathrm{~J}=\frac{\mathrm{I}}{\mathrm{~A}}=\mathrm{nq} v_{\mathrm{d}} \\
& \int_{S} \vec{J} \cdot d \vec{A}=-\frac{d}{d t} \int_{V} \rho d V_{o l} \\
& R=\frac{\rho l}{A} \quad \rho=1 / \sigma \\
& \vec{v}_{\mathrm{d}}=\frac{\mathrm{q} \tau}{\mathrm{~m}} \overrightarrow{\mathrm{E}} \quad \tau=\text { scattering time } \\
& \rho=1 / \sigma=\frac{m}{n q^{2} \tau} \\
& \mathrm{R}=\Delta \mathrm{V} / \mathrm{I} \quad \text { Ohm } \\
& \mathrm{E}=\rho \mathrm{J} \quad \text { or } \mathrm{J}=\sigma \mathrm{E} \quad \mathrm{Ohm} \\
& \mathscr{P}=\mathrm{dU} / \mathrm{dt}=\mathrm{I} \Delta \mathrm{~V} \text { power } \\
& R_{\text {eq }}=R_{1}+R_{2}+\ldots \text { series } \\
& 1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}+\ldots \quad \text { parallel } \\
& \sum \mathrm{I}_{\text {in }}=\sum \mathrm{I}_{\text {out }} \quad \text { junction } \\
& \sum_{\text {closed path }} \Delta \mathrm{V}=0 \text { loop }
\end{aligned}
$$

Magnetism：

$$
\begin{aligned}
\vec{F}_{B} & =q \vec{v} \times \vec{B} \\
d \vec{F}_{B} & =I d \vec{l} \times \vec{B} \quad \text { I-carrying wire } \\
d \vec{B} & =\frac{\mu_{\mathrm{o}}}{4 \pi} \frac{I d \vec{l} \times \hat{\mathbf{r}}}{r^{2}} \quad \text { wire } \\
\frac{F_{B}}{l} & =\frac{\mu_{\mathrm{o}} I_{1} I_{2}}{2 \pi d} \quad 2 \text { wires } \\
\vec{\tau} & =\vec{\mu} \times \vec{B} \quad \text { with } \quad \vec{\mu}=I \vec{A} \quad \text { I loop } \\
U & =-\vec{\mu} \times \vec{B} \\
B & =\frac{\mu_{\mathrm{o}} \mathrm{I}}{4 \pi d}\left(\sin \theta_{2}-\sin \theta_{1}\right) \quad \text { finite straight wire }
\end{aligned}
$$

Vector Calculus：

$d \vec{\imath}=\hat{x} d x+\hat{y} d y+\hat{z} d z=\hat{\mathbf{r}} d r+\hat{\theta} r d \theta+\hat{\varphi} r \sin \theta d \varphi \quad$ cartesian，spherical
$d \tau=d x d y d z=r^{2} \sin \theta d r d \theta d \varphi \quad$ cartesian，spherical
$\vec{\nabla}=\hat{\mathbf{x}} \frac{\partial}{\partial x}+\hat{\mathbf{y}} \frac{\partial}{\partial y}+\hat{\mathbf{z}} \frac{\partial}{\partial z} \quad$ cartesian
$\vec{\nabla}=\hat{\mathbf{r}} \frac{\partial}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\varphi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \quad$ spherical
$\vec{\nabla} \cdot \vec{F}=\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z} \quad$ cartesian
$\vec{\nabla} \cdot \vec{F}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} F_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta F_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial F_{\varphi}}{\partial \varphi} \quad$ spherical

	cartesian（ $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ）
	$\begin{aligned} & r=\sqrt{x^{2}+y^{2}+z^{2}} \\ & \varphi=\tan ^{-1}\left(\frac{y}{x}\right) \\ & \theta=\tan ^{-1}\left(\sqrt{x^{2}+y^{2}} / z\right) \end{aligned}$
	spherical（ $\mathrm{r},\left.\varphi\right\|_{0} ^{2 \pi},\left.\theta\right\|_{0} ^{\pi}$ ）
宕	$\begin{aligned} & x=r \sin \theta \cos \varphi \\ & y=r \sin \theta \sin \varphi \\ & z=r \cos \theta \end{aligned}$

	cartesian（ $\mathrm{x}, \mathrm{y}, \mathrm{z}$, ）
$\begin{aligned} & \text { ت⿹勹巳y } \\ & \text { 㻤 } \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\frac{1}{r}(x \hat{x}+y \hat{y}+z \hat{z}) \\ & \hat{\mathbf{r}}=\sin \theta \cos \varphi \hat{x}+\sin \theta \sin \varphi \hat{\mathbf{y}}+\cos \theta \hat{z} \\ & \hat{\theta}=\cos \theta \cos \varphi \hat{\mathbf{x}}+\cos \theta \sin \varphi \hat{\mathbf{y}}-\sin \theta \hat{z} \\ & \hat{\boldsymbol{\varphi}}=-\sin \varphi \hat{\mathbf{x}}+\cos \varphi \hat{\mathbf{y}} \end{aligned}$
	spherical（r，$\left.\left.\varphi\right\|_{0} ^{2 \pi},\left.\theta\right\|_{0} ^{\pi}\right)$
．	$\begin{aligned} & \hat{\mathbf{x}}=\sin \theta \cos \varphi \hat{\mathbf{r}}+\cos \theta \cos \varphi \hat{\theta}-\sin \varphi \hat{\varphi} \\ & \hat{\mathbf{y}}=\sin \theta \sin \varphi \hat{\mathbf{r}}+\cos \theta \sin \varphi \hat{\theta}+\cos \varphi \hat{\varphi} \\ & \hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\theta} \end{aligned}$

Calculus of possible utility：

$$
\begin{aligned}
\int \frac{1}{x} d x & =\ln x+c \\
\int u d v & =u v-\int v d u \\
\int \frac{1}{1+x^{2}} d x & =\tan ^{-1} x+c \\
\int \frac{x}{a^{2}+x^{2}} d x & =\frac{1}{2} \ln \left|a^{2}+x^{2}\right|+c \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}+C \\
\int \frac{1}{\sqrt{x^{2} \pm a^{2}}} d x & =\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C \\
\int \frac{d x}{\left(a^{2}+x^{2}\right)^{3 / 2}} & =\frac{x}{a^{2} \sqrt{a^{2}+x^{2}}+C} \\
\frac{d}{d x} \tan x & =\sec ^{2} x=\frac{1}{\cos ^{2} x} \\
\frac{d}{d x} \sin x & =\cos x_{\frac{d}{d x}}^{\cos x}=-\sin x \\
\frac{d}{d x} \frac{1}{u} & =\frac{-1}{u^{2}} \frac{d u}{d x}
\end{aligned}
$$

