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PH126 Exam III
Instructions

1. Solve two of the five problems below.
2. The bonus question is optional, and worth a maximum of +50% of one question.
3. Clearly mark your which problems you have chosen using the tick box.
4. Do your work on separate sheets. Staple them to this exam paper when you are finished.
5. You are allowed 1 sheet of standard 8.5x11 in paper and a calculator.

2 1. A particle of mass m is subject to a constant force F along the x axis. If it starts from rest at the origin
at time t = 0, find its position x as a function of time, using relativistic dynamics. Recall that Newton’s
second law in relativistic form is

~F =
d~p

dt
with ~p ≡ m~v√

1 − v2/c2
(1)

Note the following useful integral:∫
x√

1 + ax2
dx =

1
a

√
1 + ax2 + C (2)

2 2. In a perfect conductor, the conductivity is infinite, so ~E =0, and any net charge resides on the surface
(just as it does for an imperfect conductor in electrostatics).

(a) Show that the magnetic field is constant (i.e., ∂~B /∂t=0) inside a perfect conductor.
(b) Show that the magnetic flux through a perfectly conducting loop is constant.

A superconductor has infinite conductivity, but is more than a merely perfect conductor: it has the addi-
tional property that the (constant) ~B inside is in fact zero. This “flux exclusion” is known as the Meissner
effect, perfect diamagnetism.

(c) Show that the there is no volume current density in a superconductor, and therefore any current in a
superconductor must be confined to the surface.

2 3. Suppose

~E (r, θ,ϕ, t) = Eϕ ϕ̂ = A
sin θ

r

[
cos (kr − ωt) −

1
kr

sin (kr − ωt)

]
ϕ̂ with

ω

k
= c (3)

This is, in fact, the simplest possible spherical wave. It may be convenient to define u≡kr − ωt in your
calculations.
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(a) Show that ~E obeys the two Maxwell equations ∇ · ~E =ρ/εo and ∇× ~E =−∂~B /∂t in vacuum.
(b) Find the associated magnetic field ~B up to an overall constant.
(c) Show that the third Maxwell equation ∇ · ~B =0 is satisfied.

2 4. The current in a long solenoid is increasing linearly with time, so that the flux is proportional to
t: ΦB = αt. Two voltmeters are connected to the diametrically opposite points (A and B), together
with resistors R1 and R2, as shown below. Assume the voltmeters are ideal (infinite input resistance, zero
current draw), and that a voltmeter registers the quantity∫b

a

~E · d~l (4)

between the terminals and through the meter. Find the reading on each voltmeter.

A

B

R1 R2

V1

a

b

solenoid
I

V2

a

b

2 5. Given the circuit below, show that if the condition R1R2 =L/C is satisfied, the difference in voltage
between points A and B will be zero at any frequency.

Vo

C

A B

R1

R2

L

6. Bonus: The electrical conductivity of a certain crystal with respect to orthogonal axes x1, x2, x3 is
represented by this second-rank tensor:

σij =

25 0 0
0 7 −3

√
3

0 −3
√

3 13

× 107 (Ω ·m)−1 (5)

An electric field of magnitude 5 V/m is applied to the crystal in the direction corresponding to the unit
vector (0, 1

2 ,
√

3
2 ). Find the current density ~j that results. Bonus is worth 1/2 a normal question.



Constants:
ke ≡ 1/4πεo = 8.98755× 109 N ·m2 ·C−2

εo = 8.85× 10−12 C2/N ·m2

µ0 ≡ 4π× 10−7 T ·m/A

c2 = 1/µ0ε0 ≈
(
3× 108 m/s

)2

e = 1.60218× 10−19 C

Maxwell’s equations, Lorentz, & continuity
(without polarization or magnetization)

~F B = q~v × ~B

~∇ · ~E =
ρ

ε0

~∇ · ~B = 0

~∇ × ~E = −
∂~B

∂t

~∇ × ~B = µo~j + εoµo
∂~E

∂t

∂ρ/∂t +∇ · ~j = 0∮
S

~E · d ~A =
q

ε0εr
=

1

ε0

∫
V

ρ dV∮
S

~B · d ~A = 0∮
C

~E · d~l = −
∂

∂t

∫
S

~B · d ~A∮
C

~B · d~l = µo

∫
S

~j · d ~A + εoµo
∂

∂t

∫
S

~E · d ~A∫
S

~j ·d ~A = −
d

dt

∫
V

ρ dV

Note c2 =
1

µ0ε0

Electric Force & Field (static case):

~F12 = ke
q1q2
r212

r̂12 = q2~E1 ~r12 =~r1 − ~r2

~E1 = ~F12/q2 = ke
q1
r212

r̂12

~E = ke

∑
i

qi

r2i
r̂i → ke

∫
dq

r2
r̂ = ke

∫
V

ρr̂

r2
dτ

ρ dτ→ σ da→ λ dl

~∇ · ~E = ρ/εo ~E = − ~∇V

Electric Potential (static case):

∆V = VB − VA =
∆U

q
= −

∫B

A

~E ·d~l

Vpoint = ke
q

r
→ Vcontinuous = ke

∫
dq

r
= ke

∫
ρ

r
dτ

Upair of point charges = ke
q1q2
r12

= V1q2 = V2q1

Ufield =
εo

2

∫
E2 dτ =

1

2

∫
ρV dτ

Field transformations
(primed frame moves with v relative to unprimed along x)

E′
x = Ex E′

y = γ
(
Ey − vBz

)
E′

z = γ
(
Ez + vBy

)
B′

x = Bx B′
y = γ

(
By +

v

c2 Ez

)
B′

z = γ
(
Bz −

v

c2 Ey

)

Current, Resistance, & Impedance:

I =

∫
S

~J ·d ~A
uniform j
−−−−→ I =

dQ

dt
= nqAvd

j =
∑
k

nkqkvk
uniform j
−−−−→ j =

I

A
= nqvd

R = ∆V/I or ~j = σ~E Ohm, isotropic

ji =

3∑
j=1

σijEj Ohm, anisotropic/general

ZC =
1

iωC
ZL = iωC ZR = R

Vector Calculus:
d~l = x̂ dx + ŷ dy + ẑ dz = r̂ dr + θ̂ r dθ + ϕ̂ r sinθ dϕ cartesian, spherical

dτ = dx dy dz = r2 sinθ drdθ dϕ cartesian, spherical

~∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
cartesian

~∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sinθ

∂

∂ϕ
spherical

~∇ · ~F =
∂

∂x
+

∂

∂y
+

∂

∂z
cartesian

~∇ · ~F =
1

r2
∂

∂r

(
r2Fr

)
+

1

r sinθ

∂

∂θ
(sinθ Fθ) +

1

r sinθ

∂Fϕ

∂ϕ
spherical

~∇ × ~v =
1

r sinθ

[
∂

∂θ
(sinθ vϕ) −

∂vθ

∂ϕ

]
r̂ +

1

r

[
1

sinθ

∂vr

∂ϕ
−

∂

∂r
(rvϕ)

]
θ̂

+
1

r

[
∂

∂r
(rvθ) −

∂vr

∂θ

]
ϕ̂ spherical

cartesian (x,y,z)

sp
he

ri
ca

l

r =
√

x2 + y2 + z2

ϕ = tan−1 ( y
x

)
θ = tan−1

(√
x2 + y2/z

)
spherical (r,ϕ|2π

0 ,θ|π0 )

ca
rt

es
ia

n x = r sinθ cosϕ
y = r sinθ sinϕ
z = r cosθ

cartesian (x,y,z, )

sp
he

ri
ca

l r̂ = 1
r (x x̂ + y ŷ + z ẑ)

r̂ = sinθ cosϕ x̂ + sinθ sinϕ ŷ + cosθ ẑ

θ̂ = cosθ cosϕ x̂ + cosθ sinϕ ŷ − sinθ ẑ
ϕ̂ = − sinϕ x̂ + cosϕ ŷ

spherical (r,ϕ|2π
0 ,θ|π0 )

ca
rt

es
ia

n x̂ = sinθ cosϕ r̂ + cosθ cosϕ θ̂ − sinϕ ϕ̂

ŷ = sinθ sinϕ r̂ + cosθ sinϕ θ̂ + cosϕ ϕ̂

ẑ = cosθ r̂ − sinθ θ̂

Relativity

γ =
1√

1 − v2
c2

∆t′moving = γ∆tstationary = γ∆tp

L′
moving =

Lstationary
γ

=
Lp

γ

x′ = γ (x − vt)

∆t′ = t′1 − t′2 = γ

(
∆t −

v∆x

c2

)
p = γmv

vobj =
v + v′

obj

1 +
vv′

obj
c2

v′
obj =

vobj − v

1 −
vvobj

c2

3


