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Problem Set 1: Solutions

1. Variant on Griffiths 1.7. Find the separation vector~r=~r−~r ′ from the source point~r ′=(3, 4, 5)
to the field point ~r=(7, 2, 17). Determine its magnitude |~r | and construct the corresponding unit
vector r̂ .

~r =~r−~r ′ = (7− 3) x̂ + (2− 4) ŷ + (17− 5) ẑ = 4 x̂− 2 ŷ + 12 ẑ

|~r | =
√

42 + (−2)2 + 122 = 2
√

41 ≈ 12.8

r̂ = ~r−~r ′

|~r−~r ′|
= 4 x̂− 2 ŷ + 12 ẑ

2
√

41
= 1√

41
(2 x̂− 1 ŷ + 6 ẑ)

2. Griffiths 1.3. Find the angle between the body diagonals of a cube. Use a vector product.

Put one corner of the cube at the origin, and let it extend in the region where x, y, z are positive,
such that it has vertices at (000), (100), (110), (010), (101), (001), (011), and (111). We could
represent two body diagonals by the vectors

~A = x̂ + ŷ− ẑ
~B = x̂ + ŷ + ẑ

Note that for ~A one should translate the whole vector by 1 unit along ẑ for both diagonals to be
within the cube. You should make a sketch to be sure you understand the geometry here. We can
use the scalar (“dot”) vector product to find the angle θ between the diagonals:

cos θ =
~A · ~B
|~A||~B|

= 1 + 1− 1√
3
√

3
= 1

3 =⇒ θ = cos−1
(1

3

)
≈ 70.5◦

3. GBT Calculus Sect. 5.5, example 2. If ~a = x̂ − ŷ + ẑ, ~b=2x̂ − ŷ, and ~c=3x̂ + 5ŷ− 7ẑ, verify

the identity

~a ×
(
~b×~c

)
= (~a ·~c)~b−

(
~a · ~b

)
~c

We just need to grind through it. For the left-hand side:



~b×~c =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
2 −1 0
3 5 −7

∣∣∣∣∣∣∣∣ = 7x̂ + 14ŷ + 13ẑ

~a ×
(
~b×~c

)
=

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
1 −1 1
7 14 13

∣∣∣∣∣∣∣∣ = −27x̂ +−6ŷ + 21ẑ

For the right-hand side:

~a ·~c = (x̂− ŷ + ẑ) · (3x̂ + 5ŷ− 7ẑ) =


1
−1

1

 [3 5 −7
]

= 3− 5− 7 = −9

(~a ·~c)~b = −9~b = −18x̂ + 9ŷ

~a · ~b =


1
−1

1

 [2 −1 0
]

= 2 + 1 = 3

(
~a · ~b

)
~c = 3~c = 9x̂ + 15ŷ− 21x̂

(~a ·~c)~b−
(
~a · ~b

)
~c = −27x̂− 6ŷ + 21ẑ = ~a ×

(
~b×~c

)

4. GBT Calculus Sect. 5.4, exercise 16. If ~a and ~b are given constant vectors and ω is a constant,

describe the trajectory of a particle given by ~r(t)=~a cosωt+ ~b sinωt. Verify the following

d2~r
dt2

+ ω2~r = 0 ~r× d~r
dt

= ω~a × ~b
∣∣∣∣d~rdt

∣∣∣∣2+ω2|~r|2 = ω2
(
|~a|2 + |~b|2

)

The trajectory is an ellipse. One can verify this by considering the special case ~a = x̂, ~b = ŷ and
plotting ~r(t) or noting



r2
x

|~a|2 +
r2
y

|~b|2
= 1

which is the equation for an ellipse. In order to verify the relationships above, we will need d~rdt and
d2~r
dt2 ; we may as well calculate them now and get it over with.

d~r
dt

= −ω~a sinωt+ ω~b cosωt d2~r
dt2

= −ω2~a cosωt− ω2~b cosωt

Let us label the three relationships from left to right as (i), (ii), and (iii)
(i): The first relationship is now obvious from the form of d2~r

dt2 :

d2~r
dt2

= −ω2~a cosωt− ω2~b cosωt = −ω2~r =⇒ d2~r
dt2

+ ω2~r = 0

(ii): The second relationship is just conservation of angular momentum (if you multiply the left-
hand side by the mass of the particle m). Think about what the answer should be if ~a = x̂, ~b= ŷ.
If we multiply both sides by the particle mass, the left-hand side of the equation is then angular
momentum, and the right-hand side is (for a point particle) mr2ω, or Iω.

One way you will be tempted to solve this is by just defining unit vectors along the directions of ~a
and ~b, and then calculating the cross product of each side. This will work . . . but it requires sub-
tlety since ~a and ~b are not necessarily orthogonal, and our methods for calculating cross-products
presume the use of an orthogonal set of unit vectors (orthogonal basis). More than likely, you will
find that stray factors of sin θ have gone missing if you proceed this way.

Anyway: what we need to do is express ~a and ~b in terms of a comfortable set of orthogonal unit
vectors before proceeding. It may not seem as general to suddenly give up our coordinate-free
expressions and pin ourselves to a particular coordinate system, but our result will not be any less
valid. Think of it this way: we are just trading the constant vectors ~a and ~b for two different
constant vectors that happen to be orthogonal. If we wanted to, we could always change to an-
other basis (set of unit vectors) later, or change back to the ~a-~b basis, and everything would be fine.

Let us pick x̂, ŷ and ẑ as our orthogonal basis. We could just as easily pick spherical coordinates
or something else, but this is an easy choice. We choose x̂ and ŷ to define the same plane as ~a and
~b, which we are also free to do without loss of generality.i We may thus decompose ~a and ~b

~a = axx̂ + ayŷ ~b = bxx̂ + byŷ
iSo long as ~a and ~b are not parallel, but the problem would be trivial anyway if that were true.



Therefore,

~r = (ax cosωt+ bx sinωt) x̂ + (ay cosωt+ by sinωt)
d~r
dt

= (−ωax sinωt+ ωbx cosωt) x̂ + (−ωay sinωt+ ωby cosωt) ŷ

We can now calculate the cross-product:

~r× d~r
dt

=

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

ax cosωt+ bx sinωt ay cosωt+ by sinωt 0
−ωax sinωt+ ωbx cosωt −ωay sinωt+ ωby cosωt 0

∣∣∣∣∣∣∣∣
= ẑ [(ax cosωt+ bx sinωt) (−ωay sinωt+ ωby cosωt)]

− ẑ [(ay cosωt+ by sinωt) (−ωax sinωt+ ωbx cosωt)]

= ωẑ [axby − aybx] = ω~a × ~b

The term in brackets on the last line is the definition of the cross product of ~a and ~b in our
orthogonal x−y−z basis. Note that since we chose ~a and ~b to lie in the x−y plane, their cross
product must be along ẑ.

~a × ~b = (axby − aybx) ẑ

(iii): Finally, the last relationship follows readily.

∣∣∣∣d~rdt
∣∣∣∣2 =

(
−ω~a sinωt+ ω~b cosωt

)
·
(
−ω~a sinωt+ ω~b cosωt

)
= ω2|~a|2 sin2 ωt− 2ω2~a · ~b sinωt cosωt+ ω2|~b|2 cos2 ωt

ω2|~r|2 = ω2~r ·~r = ω2
(
|~a|2 cos2 ωt+ 2ω2~a · ~b sinωt cosωt+ |~b|2 sin2 ωt

)
∣∣∣∣d~rdt

∣∣∣∣2+ω2|~r|2 = ω2
(
|~a|2 sin2 ωt+ |~b|2 cos2 ωt

)
+ ω2

(
|~a|2 cos2 ωt+ |~b|2 sin2 ωt

)
= ω2

(
|~a|2 + |~b|2

)


