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1. Variant on Griffiths 1.7. Find the separation vector Z=F— ' from the source point ¥’ = (3, 4, 5)
to the field point ¥=(7,2,17). Determine its magnitude |Z| and construct the corresponding unit
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2. Griffiths 1.3. Find the angle between the body diagonals of a cube. Use a vector product.

Put one corner of the cube at the origin, and let it extend in the region where x,y, z are positive,
such that it has vertices at (000), (100), (110), (010), (101), (001), (011), and (111). We could

represent two body diagonals by the vectors

A=x+y-2
B=%+y+2

Note that for A one should translate the whole vector by 1 unit along z for both diagonals to be
within the cube. You should make a sketch to be sure you understand the geometry here. We can
use the scalar (“dot”) vector product to find the angle 6 between the diagonals:
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3. GBT Calculus Sect. 5.5, example 2. If =% —§ + 2, b=2% — ¥, and €=3X + 5y — 7z, verify

the identity
x (bx¢) =& eb-(a-b)a

We just need to grind through it. For the left-hand side:
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For the right-hand side:
1
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1
i-b=|-1 [2 -1 o]:2+1=3
1

(é’~5)6:36:9>2+15y—21§<

(8- @b (&-B)&=-27x— 6y +212=ax (b x¢)

4. GBT Calculus Sect. 5.4, exercise 16. If & and b are given constant vectors and w is a constant,

describe the trajectory of a particle given by ¥(t)=a coswt + b sin wt. Verify the following
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The trajectory is an ellipse. One can verify this by considering the special case & =X, b= ¥y and

plotting F(¢) or noting
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which is the equation for an ellipse. In order to verify the relationships above, we will need % and
d3r.

iz we may as well calculate them now and get it over with.

= —wasinwt + wb cos wt — = —w“acoswt — w-b cos wt

dt dt2

Let us label the three relationships from left to right as (i), (ii), and (iii)

(i): The first relationship is now obvious from the form of % :
d*F - d*F
el —w¥dcoswt — w?bcoswt = —wWT = 7o) +wT=0

(ii): The second relationship is just conservation of angular momentum (if you multiply the left-
hand side by the mass of the particle m). Think about what the answer should be if &=x%, S:y.
If we multiply both sides by the particle mass, the left-hand side of the equation is then angular

2w, or Tw.

momentum, and the right-hand side is (for a point particle) mr
One way you will be tempted to solve this is by just defining unit vectors along the directions of &
and B, and then calculating the cross product of each side. This will work ...but it requires sub-
tlety since & and b are not necessarily orthogonal, and our methods for calculating cross-products
presume the use of an orthogonal set of unit vectors (orthogonal basis). More than likely, you will

find that stray factors of sin # have gone missing if you proceed this way.

Anyway: what we need to do is express & and b in terms of a comfortable set of orthogonal unit
vectors before proceeding. It may not seem as general to suddenly give up our coordinate-free
expressions and pin ourselves to a particular coordinate system, but our result will not be any less
valid. Think of it this way: we are just trading the constant vectors & and b for two different
constant vectors that happen to be orthogonal. If we wanted to, we could always change to an-

other basis (set of unit vectors) later, or change back to the a-b basis, and everything would be fine.

Let us pick X, ¥ and Z as our orthogonal basis. We could just as easily pick spherical coordinates
or something else, but this is an easy choice. We choose X and ¥ to define the same plane as & and
B, which we are also free to do without loss of generalityﬂ We may thus decompose & and b

—

F=a,X + a, b = b,% + b,

iSo long as & and b are not parallel, but the problem would be trivial anyway if that were true.



Therefore,

I = (ay coswt + by sinwt) X + (ay, coswt + by sin wt)
dr . . . -
i (—wag sin wt 4+ wb, cos wt) X + (—way sin wt + wb, cos wt) §

We can now calculate the cross-product:

X vy Z

L dar
rx i Gy cOs wt + b, sin wt ay cos wt + by sin wt 0
—wag sinwt + wb, coswt  —way sinwt + wby, coswt 0

= Z[(ay coswt + by sinwt) (—wa, sinwt 4+ wb, coswt)]
— z[(ay coswt + by sinwt) (—way sinwt + wb,, cos wt)]

= wz [azby — ayb,] = wa x b
The term in brackets on the last line is the definition of the cross product of & and b in our
orthogonal x —y— z basis. Note that since we chose & and b to lie in the x—y plane, their cross
product must be along Z.

d&x b = (azb, — ayb,) 2

(iii): Finally, the last relationship follows readily.
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all B (1a*sin® wt + [BJ? cos? wi) + w? (|&[* cos® wt + [B[? sin® wit) = w? (|&[ + [B]?)

dt




