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Problem Set 2: SOLUTION

1. 10 points. (a) How much negative charge and how much positive charge are there on the electrons
and the protons in a cup of water (0.25 kg)? Note Avogadro’s number is NA =6.022×1023, and each oxygen
atom has 8 electrons. (b) What is the magnitude of the attractive force exerted by the electrons in a cup
of water on the protons in a second cup of water at a distance of 10 m?

The “molecular mass" of water is 18 g/mol, so 250 g of water amounts to 250/18 mol. For each mole
of water, there are 6.02 × 1023 molecules. Each molecule has two hydrogen atoms (with one electron)
and one oxygen atom (with eight electrons), with a total of ten electrons per molecule. Thus, we can
calculate the total amount of negative charge in the cup of water readily:

[neg. chg.] = 0.25 kg
[
1000 g
1 kg

] [
1 mol
18 g

] [
6.02× 1023 molecules

mol

] [
10 electrons

molecule

] [
−1.6× 10−19 C

electron

]
= 1.3× 107 C

Clearly, since the cup of water is overall electrically neutral, the positive charge on the protons is just
the opposite of this.

If we treat the total charge in each glass of water as point charges, then in the first cup of water we have
one point charge of −1.3× 10−7 C and another of 1.3× 10−7 C, separated by 10 m. The force is then:

|~F| = keq1q2

r2
12

=

[
9× 109 N ·m2/C2

] [
−1.3× 10−7 C

] [
+1.3× 10−7 C

]
[10 m]2

= −1.5× 1022 N

This is an enormous force, equivalent to a weight of a billion billion tons! Thankfully, this attractive
force on the protons is precisely canceled by an equally large repulsive force exerted by the protons in
one cup on the protons in the other.

2. 5 points. Consider two toner particles separated by 1.2×10−5 m; each of the two particles has a
negative charge of −30 fC. What is the electric force that one particle exerts on the other? Treat the toner
particles approximately as point particles. Note that 1 fC=10−15 fC.

Since we can treat the toner particles as point charges, the force one particle exerts on the other is found
easily with Coulomb’s law:



|~F| = keq1q2

r2
12

=

[
9× 109 N ·m2/C2

] [
−30× 10−15 C

] [
−30× 10−15 C

]
[1.2× 10−5 m]2

= 5.6× 10−8 N = 56 nN

The positive sign means that the force is repulsive, as it should be for two particles with the same
sign charge. The force will tend to push the two particles away from each other, along a line joining
them together. This mutual repulsion helps keep the toner particles dispersed. as opposed to clumping
together.

3. 10 points. Eight equal charges q are located at the corners of a cube of side a. (a) Find the magnitude
of the total force on one of the charges due to the other seven charges. (b) Find the electric potential at
one corner, taking zero potential to be infinitely far away.

Refer to the figure below. Since all charges are equivalent, we can pick any one to be the charge of
interest, leaving 7 other charges to consider (numbered). Of those 7 other charges, there are 3 charges
a distance a away, 3 a distance a

√
2 away, and one charge a distance a

√
3 away.
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By symmetry, the x, y, and z components of the electric force must be equal. Thus, we only need to
calculate one component of the total force on the charge of interest. We will choose the coordinate
system as indicated in the figure, and calculate the x component of the force on the lower right-most
charge. We can already see that several charges will not give an x component of the force at all, just
from symmetry - charges 3, 4 and 7. This leaves only charges 1, 2, 5, and 6 to deal with.

Charge 6 will give a force purely in the x direction:

F6,x =
keq

2

a2

Charges 5 and 2 are both a distance a
√

2 away, and a line connecting these charges with the charge of
interest makes a 45◦ with the x axis in both cases. Thus, noting that cos 45◦=1/

√
2,

F2,x = F5,x =
keq

2(
a
√

2
)2 cos 45◦ =

keq
2

2a2

1√
2

=
keq

2

a2

1
2
√

2



Finally, we have charge 1 to deal with. It is a distance
√

3 away (see the figure). What is the x component
of the force from charge 1? First, we can find the component of the force in the x − z plane (see the
triangle in the upper right of the figure):

F1,x−z = F1 cos ϕ = F1

√
2√
3

Now, we can find the component of the force along the x direction:

F1,x = F1,x−z cos 45◦ = F1,x−z
1√
2

= F1

√
2√
3

1√
2

= F1
1√
3

Since we know charge 1 is a distance a
√

3 away, we can calculate the full force F1 easily, and complete
the expression for F1,x:

F1,x =
keq

2(
a
√

3
)2 1√

3
=

keq
2

a2

1
3
√

3

Now we have the x component for the force from every charge; the net force in the x direction is just
the sum of all those:

Fx,net = F1,x + F2,x + F5,x + F6,x =
keq

2

a2

[
1 +

1
2
√

2
+

1
2
√

2
+

1
3
√

3

]
=

keq
2

a2

[
1 +

1√
2

+
1

3
√

3

]
Since the problem is symmetric in the x, y, and z directions, all three components must be equivalent.
Thus, the total force is:

~Fnet =
keq

2

a2

[
1 +

1√
2

+
1

3
√

3

]
[x̂ + ŷ + ẑ] ≈ keq

2

a2
[1.90] [x̂ + ŷ + ẑ]

The magnitude of the force is then just

|~Fnet| =
√

F 2
x + F 2

y + F 2
z =

√
3
[
1 +

1√
2

+
1

3
√

3

]
keq

2

a2
≈ 3.29

keq
2

a2

The potential is much easier to find - potential is a scalar, and we have no components to worry about.
All we need to know is that there are 3 charges a distance a away, 3 a distance a

√
2 away, and one charge

a distance a
√

3 away. We can find the potential due to each charge separately, and add the results via
superposition:

V = 3
keq

a
+ 3

keq

a
√

2
+

keq

a
√

3
=

keq

a

[
3 +

3√
2

+
1√
3

]
≈ 5.70

keq

a

4. 10 points. An ion milling machine uses a beam of gallium ions (m = 70 u) to carve microstructures
from a target. A region of uniform electric field between parallel sheets of charge is used for precise control
of the beam direction. Single ionized gallium atoms with initially horizontal velocity of 1.8×104 m/s enter
a 2.0 cm-long region of uniform electric field which points vertically upward, as shown below. The ions are
redirected by the field, and exit the region at the angle θ shown. If the field is set to a value of E =90 N/C,
what is the exit angle θ?



+  +  +  +  +  +  +  +  +  +  +  +  +  
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A singly-ionized gallium atom has a charge of q =+e, and the mass of m=70 u means 70 atomic mass
units, where one atomic mass unit is 1 u=1.66× 10−27 kg.

What we really have here is a particle under the influence of a constant force, just as if we were to throw
a ball horizontally and watch its trajectory under the influence of gravity (the only difference is that
since we have negative charges, things can “fall up"). To start with, we will place the origin at the ion’s
initial position, let the positive x axi run to the right, and let the positive y axis run straight up. Thus,
the particle starts with a velocity purely in the x direction: ~v0 =vx x̂.

While the particle is in the electric-field-containing region, it will experience a force pointing along the
+y direction, with a constant magnitude of qE. Since the force acts only in the y direction, there will
be a net acceleration only in the y direction, and the velocity in the x direction will remain constant.
Once outside the region, the particle will experience no net force, and it will therefore continue along in
a straight line. It will have acquired a y component to its velocity due to the electric force, but the x
component will still be vx. Thus, the particle exits the region with velocity ~v=vx x̂ + vy ŷ. The angle
at which the particle exits the plates, measured with respect to the x axis, must be

tan θ =
vy

vx

Thus, just like in any mechanics problem, finding the angle is reduced to a problem of finding the final
velocity components, of which we already know one. So, how do we find the final velocity in the y
direction? Initially, there is no velocity in the y direction, and while the particle is traveling between
the plates, there is a net force of qE in the y direction. Thus, the particle experiences an acceleration

ay =
Fy

m
=

qEy

m

The electric field is purely in the y direction in this case, so Ey =90 N/C. Now we know the acceleration
in the y direction, so if we can find out the time the particle takes to transit the plates, we are done,
since the the transit time ∆t and acceleration ay determine vy:

vy = ay∆t

Since the x component of the velocity is not changing, we can find the transit time by noting that the
distance covered in the x direction must be the x component of the velocity times the transit time. The
distance covered in the x direction is just the width of the plates, so:

dx = vx∆t = 2.0 cm =⇒ ∆t =
dx

vx

Putting the previous equations together, we can express vy in terms of known quantities:

vy = ay∆t = ay
dx

vx
=

qEy

m

dx

vx
=

qEydx

mvx



Finally, we can now find the angle θ as well:

tan θ =
vy

vx
=

qEydx

mvx

vx
=

qEydx

mv2
x

And that’s that. Now we plug in the numbers we have, watching the units carefully:

θ = tan−1

[
qEydx

mv2
x

]
= tan−1

[ (
1.6× 10−19 C

)
(90 N/C) (0.02 m)

(70 · 1.66× 10−27 kg) (1.8× 104 m/s)2

]

= tan−1

[
7.6× 10−3 N

kg ·m/s2

]
note 1 N=1 kg ·m/s2

= tan−1 7.6× 10−3

≈ 0.44◦

5. 5 points. A sphere the size of a basketball is charged to a potential of −1000 V. About how many
extra electrons are on it, per cm2 of surface?

If the charge is spread evenly over the surface of a spherical object, like a basketball, then Gauss’
law says we may treat the charge distribution as a point charge. Thus, we may consider the uniformly
charged basketball equivalent to a single point charge at the center of the basketball. A men’s regulation
basketball has a diameter of 9.39 in, and thus a radius of 0.12 m. We know then that the potential at
the surface of the basketball is −1000 V, and this potential results from an effective point charge q at
the center of the basketball, 0.12 m from the surface. Using the expression for the potential from a point
charge:

−1000 V =
keq

r
=

[
9× 109 N ·m2/C2

]
q

0.12 m
=⇒ q = −1.33× 10−8 C

This is the effective charge on the basketball. Given that one electron has −1.6×10−19 C of charge, this
must correspond to:

(number of electrons) =
−1.33× 10−8 C

−1.6× 10−19 C/electron = 8.33× 1010 electrons

If these electrons are spread out evenly over the surface, the electron density can be calculated from the
surface area of the basketball (remembering that the surface area of a sphere is 4πr2, and we were asked
to use cm2):

(density of electrons) =
8.33× 1010 electrons

4π (12 cm)2
≈ 4.6× 107 electrons/cm2

6. 15 points. In the circuit below, if R0 is given, what value must the R1 have for the equivalent resistance
between the two terminals a and b to be R0?



R1 R1

R1 R0

a

b

This one is, admittedly, a bit messy. The end result does have a certain elegance though ...

With any complicated resistor problem, we first try to find sets of two resistors purely in parallel or
purely in series. Combine any such pairs, lather, rinse, repeat. The first pair we can spot - and the
only one which is purely in series or parallel - is resistor R0 in series with the rightmost R1. We cannot
combine any other resistors, since no other pairs are purely in series or parallel. Putting together R1

and R0 makes an equivalent resistor R2, whose value we can calculate easily:

R2 = R1 + R0

This will leave the new resistor purely in parallel with the middle R1, which means we can combine R2

and R1 into a new resistor R3:

1
R3

=
1

R2
+

1
R1

=
1

R1 + R0
+

1
R1

=
R1 + R0 + R1

R1 (R1 + R0)
=

2R1 + R0

R2
1 + R1R0

=⇒ R3 =
R1R0 + R2

1

2R1 + R0

Our progress so far is shown below.

R1 R1

R1 R0

R1

R1 R2

R1

R3 Req

⇒
⇒

⇒

Now we only have R3 and one R1 left, purely in series. Combining them will give us one single equivalent
resistor Req:

Req = R1 + R3 =
R1R0 + R2

1

2R1 + R0
+ R1 =

R1R0 + R2
1

2R1 + R0
+

R1 (2R1 + R0)
2R1 + R0

=
R1R0 + R2

1 + 2R2
1 + R1R0

2R1 + R0

=
3R2

1 + 2R1R0

2R1 + R0



The final bit of the problem says that we want the equivalent resistance to be exactly R0. We just need
to set the above equal to R0, and solve for R1 in terms of R0.

R0 =
3R2

1 + 2R1R0

2R1 + R0

R0 (2R1 + R0) = 3R2
1 + 2R1R0

2R0R1 + R2
0 = 3R2

1 + 2R1R0

R2
0 = 3R2

1

=⇒ R1 =
R0√

3

7. 10 points. The distance between the oxygen nucleus and each of the hydrogen nuclei in an H2O
molecule is 9.58×10−11 m, and the bond angle between hydrogen atoms is 105◦. (a) Find the electric field
produced by the nuclear charges (positive charges) at the point P a distance 1.2×10−10 m to the right of
the oxygen nucleus. (b) Find the electric potential at P .

105
◦

H

H

O

+

+

9
.

5
8
×

1
0
−

1
1 m

9
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8
×

1
0
−

1
1

m

P
+

First, we need to define the geometry of the situation a bit more clearly, and label things properly. Have
a look:

P
52.5

◦

q2

q3

q1

r13

r12

r3p

r2p

θ

r1p

E3

E1

E2

θ

Rather than worry about which nucleus is which, we will simply label the charges q1, q2, and q3 and
be as general as possible. We will also label the distances in a generic but self-explanatory way: the
distance from charge 1 to charge 2 is r12, the distance from charge 3 to the point P is r3p, and so on.

First, connect q1 and P with a straight line. This is our x axis, and it nicely splits the problem into
two symmetric halves. Since the bond angle was given as 105◦, we know that the angle ∠Pq1q3 must be
52.5◦, as must the angle ∠Pq1q2. The electric field due to charge 1 will clearly point directly along the
x axis toward point P . The electric field due to charge 3 will make an angle θ with the x axis. Clearly,
by symmetry, since q3 =q2 the electric fields from charges 2 and 3 will have the same x components, but
equal and opposite y components - E2x = E3x, E2y = −E3y. Thus, the fields from charges 2 and 3 will



in total have only an x component - so it is enough to compute only the x component of the field. And,
since the x components are the same, we really only need to find one of them. In total, the field at P is
then only composed of x components, and requires only two calculations:

~EP = [E2x + E3x + E1] x̂ = [2E3x + E1] x̂

First, we can easily find E1, since we are told r1p =1.2×10−10 m:

E1 =
keq1

r2
1p

In order to find E3x, we need two things: the angle θ, and the distance of charge 3 to point P , viz., r3p.
We can find the latter in terms of known quantities using the law of cosinesi on the triangle 4q1Pq3

with the 52.5◦ angle

r2
3p = r2

1p + r2
13 − 2r13r1p cos 52.5◦ ≈ 9.79× 10−11 m

Once we have r3p, we can find the angle θ by using the law of cosines on the same triangle, this time
about the angle θ:

r2
13 = r2

1p + r2
3p − 2r1pr3p cos θ

=⇒ cos θ =
r2
1p + r2

3p − r2
13

2r1pr3p
≈ 0.631

=⇒ θ ≈ 50.9◦

Once we have the angle and distance, we can easily find E3, and then its x component:

E3 =
k3q3

r2
3p

E3x = E3 cos θ =
k3q3

r2
3p

cos θ

Since the x component of the field from charge 2 is the same (and the y components of E2 and E3

cancel), we are ready to find the total field at point P :

~EP = [2E3x + E1] x̂ =

[
2

(
k3q3

r2
3p

cos θ

)
+

keq1

r2
1p

]
x̂ ≈

[
9.9× 1011 V/m

]
x̂

Now, when you get to the point of actually plugging in numbers, remember: the charge on a hydrogen
nucleus, with a single proton, is +e, while that on an oxygen nucleus is +8e.

What about the potential at point P? Far easier, no vectors! We have two charges a distance r3p away,
and one a distance r1p away (again, we know that the contributions from charges 2 and 3 will be the
same):

VP =
keq1

r1p
+

keq2

r2p
+

keq3

r3p
=

keq1

r1p
+ 2

keq3

r3p
≈ 125 V

iThis is a very useful trick, and remembering if you have forgotten. http://en.wikipedia.org/wiki/Law_of_cosines.

http://en.wikipedia.org/wiki/Law_of_cosines


8. 15 points. Five identical point charges +q are arranged in two different manners as shown below - in
once case as a face-centered square, in the other as a regular pentagon. Find the potential energy of each
system of charges, taking the zero of potential energy to be infinitely far away. Express your answer in
terms of a constant times the energy of two charges +q separated by a distance a.

a

+q

a

+q

Using the principle of superposition, we know that the potential energy of a system of charges is just the
sum of the potential energies for all the unique pairs of charges. The problem is then reduced to figuring
out how many different possible pairings of charges there are, and what the energy of each pairing is.
The potential energy for a single pair of charges, both of magnitude q, separated by a distance d is just:

PEpair =
keq

2

d

Since all of the charges are the same in both configurations, all we need to do is figure out how many
pairs there are in each situation, and for each pair, how far apart the charges are.

How many unique pairs of charges are there? There are not so many that we couldn’t just list them
by brute force - which we will do as a check - but we can also calculate how many there are. In both
configurations, we have 10 charges, and we want to choose all possible groups of 2 charges that are not
repetitions. So far as potential energy is concerned, the pair (2, 1) is the same as (1, 2). Pairings like
this are known as combinations, as opposed to permutations where (1, 2) and (2, 1) are not the same.
Calculating the number of possible combinations is done like this:ii

ways of choosing pairs from five charges =
(

5
2

)
= 5C2 =

5!
2! (5− 2)!

=
5 · 4 · 3 · 2 · 1
2 · 1 · 3 · 2 · 1

= 10

So there are 10 unique ways to choose 2 charges out of 5. First, let’s consider the face-centered square
lattice. In order to enumerate the possible pairings, we should label the charges to keep them straight.
Label the corner charges 1−4, and the center charge 5 (it doesn’t matter which way you number the
corners, just so long as 5 is the middle charge). Then our possible pairings are:

(1, 2) (1, 3) (1, 4) (1, 5)
(2, 3) (2, 3) (2, 5)
(3, 4) (3, 5)
(4, 5)

And there are ten, just as we expect. In this configuration, there are only three different distances
that can separate a pair of charges: pairs on adjacent corners are a distance a

√
2 apart, a center-corner

pairing is a distance a apart, and a far corner-far corner pair is 2a apart. We can take our list above,
and sort it into pairs that have the same separation:

iiA nice discussion of combinations and permutations is here: http://www.themathpage.com/aPreCalc/
permutations-combinations.htm

http://www.themathpage.com/aPreCalc/permutations-combinations.htm
http://www.themathpage.com/aPreCalc/permutations-combinations.htm


Table 1: Charge pairings in the square lattice

#, pairing type separation pairs
4, center-corner a (1, 5) (2, 5) (3, 5) (4, 5)
4, adjacent corners a

√
2 (1, 4) (3, 4) (2, 3) (1, 2)

2, far corner 2a (1, 3) (2, 4)

And we are nearly done already. We have four pairs of charges a distance a apart, four that are a
√

2
apart, and two that are 2a apart. Write down the energy for each type of pair, multiply by the number
of those pairs, and add the results together:

PEsquare = 4 (center-corner pair) + 2 (far corner pair) + 4 (adjacent corner pair)

= 4
[
keq

2

a

]
+ 2

[
keq

2

2a

]
+ 4

[
keq

2

a
√

2

]
=

keq
2

a

[
4 + 1 +

4√
2

]
=

keq
2

a

[
5 + 2

√
2
]
≈ 7.83

kq2

a

For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the
others from 2-5 in a clockwise or counter-clockwise fashion. Since we still have 5 charges, there are
still 10 pairings, and they are the same as the list above. For the pentagon, however, there are only
two distinct distances - either charges can be adjacent, and thus a distance a apart, or they can be
next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon, each of the angles is 108◦, and in our case, each of the sides has length a, as
shown below. We can use the law of cosines to find the distance d between next-nearest neighbors.

1
0
8
o

d
a

a

d2 = a2 + a2 − 2 · a · a cos 108◦ = 2a2 (1− cos 108◦)

=⇒ d = a
√

2− 2 cos 108◦ = aφ ≈ 1.618a

Here the number φ is known as the “Golden Ratio.” The distances a and d automatically satisfy the
golden ratio in a regular pentagon, d/a=φ. Given the nearest neighbor distance in terms of a, we can
then create a table of pairings for the pentagon (Table 2).

Table 2: Charge pairings in the pentagonal lattice

#, pairing type separation pairs
5, next-nearest neighbors d (1, 3) (1, 4) (2, 4) (2, 5) (3, 5)
5, adjacent a (1, 2) (2, 3) (3, 4) (4, 5) (5, 1)



Now once again we write down the energy for each type of pair, and multiply by the number of pairs:

PEpentagon = 5 (energy of adjacent pair) + 5 (energy of next-nearest neighbor pair)

= 5
[
keq

2

a

]
+ 5

[
keq

2

d

]
= 5

[
keq

2

a

]
+ 5

[
keq

2

a
√

2− 2 cos 108◦

]
=

keq
2

a

[
5 +

5√
2− 2 cos 108◦

]
≈ keq

2

a

[
5 +

5
1.618

]
≈ 8.09

kq2

a

So the energy of the pentagonal lattice is higher, meaning it is less favorable than the square lattice. Nei-
ther one is energetically favored though - since the energy is positive, it means that either configuration
of charges is less stable than just having all five charges infinitely far from each other. This makes sense
- if all five charges have the same sign, they don’t want to arrange next to one another, and thus these
arrangements cost energy to keep together. If we didn’t force the charges together in these patterns, the
positive energy tells us that they would fly apart given half a chance. For this reason, neither one is a
valid sort of crystal lattice, real crystals have equal numbers of positive and negative charges, and are
overall electrically neutral.

9. 10 points. You are given two batteries, one of 9 V and internal resistance 0.50 Ω, and another of 3 V
and internal resistance 0.40 Ω. How must these batteries be connected to give the largest possible current
through an external 0.30 Ω resistor? What is this current?

There are basically two interesting ways to hook up the components given: all series, and all parallel.
First, one can put everything in series. In series, the circuit is simple. You have three resistors and two
batteries, and since there is only a single current in the circuit, which we’ll call I, you can readily add
up the voltage drops around the circuit to find I:

series: − 0.5 Ω I + 9 V− 0.4 Ω I + 3 V− 0.3 Ω I = 0
12 V− 1.2 Ω I = 0

I = 10 A

Putting everything in parallel looks like this:

0.5Ω

0.4Ω

0.3Ω

9V

3V

I1

I2

I3

In this case, there are three currents to deal with, it is the third I3 that we are interested in. First, we
can apply the “junction rule” at the circular dot on the right-hand side of the circuit. Current I1 enters
the junction, currents I2 and I3 leave:



I1 = I2 + I3

Next, we can apply the “loop rule" around the upper-most loop, going clockwise. Remember that
crossing a battery from the little pole (-) to the big pole (+) is a gain in voltage.

−0.5 Ω I1 + 9 V− 3 V− 0.4 Ω I2 = 0

We can do the same for the lower-most loop:

−0.4 Ω I2 + 3 V− 0.3 ΩI3 = 0

Summarizing our three equations so far (and dropping the units):

I1 − I2 − I3 = 0
−0.5I1 − 0.4I2 = −6

0.4I2 − 0.3I3 = −3

We now have three equations and three unknowns. There are a few ways to go about solving them, I
will illustrate two. First, plug the first equation into the third, and solve that for I1

0.4I2 − 0.3 (I1 − I2) = 0.7I2 − 0.3I1 = −3

=⇒ I1 =
0.7
0.3

I2 +
3

0.3

Now plug that into the second equation we have:

−0.5I1 − 0.4I2 = −0.5
(

0.7
0.3

)
− 0.4

(
3

0.3

)
− 0.4I2 = −6

I2

(
0.4 + 0.5

0.7
0.3

)
= 6− 0.5

(
3

0.3

)
I2 = 0.638 A

Now that we have I2, we can use the third equation to find I3, the desired current through the 0.3 Ω
resistor:

I3 =
0.4I2 + 3

0.3
= 10.85 A

Thus, connecting everything in parallel gives a slightly higher current through the resistor. One could
also try to put two components in series and the third in parallel with that; you can quickly verify that
none of those three combinations yield a larger current.

Another way to solve this, perhaps more quickly, is to use matrices and Cramer’s rule,iii if you are
familiar with this technique. If you are not familiar with matrices, you can skip to the next problem -
you are not required or necessarily expected to know how to do this. First, write the three equations in
matrix form:

iiiSee ‘Cramer’s rule’ in the Wikipedia to see how this works.



 1 −1 −1
−0.5 −0.4 0

0 0.4 −0.3

I1

I2

I3

 =

 0
−6
−3


aI = V

The matrix a times the column vector I gives the column vector V, and we can use the determinant
of the matrix a with Cramer’s rule to find the currents. For each current, we construct a new matrix,
which is the same as the matrix a except that the the corresponding column is replaced the column
vector V. Thus, for I1, we replace column 1 in a with V, and for I2, we replace column 2 in a with V.
We find the current then by taking the new matrix, calculating its determinant, and dividing that by
the determinant of a. Below, we have highlighted the columns in a which have been replaced to make
this more clear:

I1 =

∣∣∣∣∣∣
0 −1 −1
−6 −0.4 0
−3 0.4 −0.3

∣∣∣∣∣∣
deta

I2 =

∣∣∣∣∣∣
1 0 −1

−0.5 −6 0
0 −3 −0.3

∣∣∣∣∣∣
deta

I3 =

∣∣∣∣∣∣
1 −1 0

−0.5 −0.4 −6
0 0.4 −3

∣∣∣∣∣∣
deta

Now we need to calculate the determinant of each new matrix, and divide that by the determinant of
a.iv First, the determinant of a.

det a = (1)(−0.4)(−0.3)− (1)(0)(0.4) + (−1)(0)(0)− (−1)(−0.5)(−0.3)
+ (−1)(−0.5)(0.4)− (−1)(−0.4)(0) = 0.47

We can now find the currents readily from the determinants of the modified matrices above and that of
a we just found. We really only want I3, so we can find that directly:

I3 =

∣∣∣∣∣∣
1 −1 0

−0.5 −0.4 −6
0 0.4 −3

∣∣∣∣∣∣
deta

=
3(0.4) + 6(0.4) + 3(0.5)

0.47
= 10.85 A

This time, we omitted the terms in the determinant which give zeros. Once you are familiar with this
method of solving systems of equations, it can be quite efficient. You can complete the same procedure
for I2 and I1, you should find I2 =0.638 A and I1 =11.49 A.

10. 10 points. Two capacitors, one charged and the other uncharged, are connected in parallel. (a)
Prove that when equilibrium is reached, each carries a fraction of the initial charge equal to the ratio of
its capacitance to the sum of the two capacitances. (b) Show that the final energy is less than the initial
energy, and derive a formula for the difference in terms of the initial charge and the two capacitances.

This problem is easiest to start if you approach it from a conservation of energy & charge point of view.
We have two capacitors. Initially, one capacitor stores a charge Q1i, while the other is empty, Q2i =0.
After connecting them together in parallel, some charge leaves the first capacitor and goes to the second,
leaving the two with charges Q1f and Q2f , respectively. Now, since there were no sources hooked up,
and we just have the two capacitors, the total amount of charge must be the same before and after we
hook them together:

ivAgain, the Wikipedia entry for ‘determinant’ is quite instructive.



Qi = Qf

Q1i + Q2i = Q1f + Q2f

Q1i = Q1f + Q2f

We also know that if two capacitors are connected in parallel, they will have the same voltage ∆V across
them:

∆Vf =
Q1f

C1
=

Q2f

C2

The fraction of the total charge left on the first capacitor can be found readily combining what we have:

Q1f

Qi
=

Q1f

Q1i
=

Q1f

Q1f + Q2f
=

Q1f

Q1f + C2
C1

Q1f

=
C1Q1f

C1Q1f + C2Q1f
=

C1

C1 + C2

The second capacitor must have the rest of the charge:

Q2f

Qi
= 1− C1

C1 + C2
=

C2

C1 + C2

That was charge conservation. We can also apply energy conservation, noting that the energy of a
charged capacitor is Q2/2C:

Ei = Ef

Q2
1i

2C1
=

Q2
1f

2C1
+

Q2
2f

2C2

The final energy can be simplified using the result of the first part of the problem - we note that
Q1f =QiC1/ (C1 + C2) and Q2f =QiC2/ (C1 + C2)

Ef =
Q2

1f

2C1
+

Q2
2f

2C2

=
(

QiC1

C1 + C2

)2 1
2C1

+
(

QiC2

C1 + C2

)2 1
2C2

=
Q2

i C1

2 (C1 + C2)
2 +

Q2
i C2

2 (C1 + C2)
2

=
Q2

i (C1 + C2)
2 (C1 + C2)

2 =
Q2

i

2 (C1 + C2)

=
Q2

i

2C1

(
C1

C1 + C2

)
= Ei

(
C1

C1 + C2

)
Thus, the final energy will be less than the initial energy, by a factor C1/ (C1 + C2) < 1.


