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1. Ohanian 36.31 A flexible drive belt runs over two flywheels whose axles are mounted on a rigid
base (Fig. 1). In the reference frame of the base, the horizontal portions of the belt have a speed v and
therefore are subject to length contraction, which tightens the belt around the flywheels. However, in
a reference frame moving to the right with the upper portion of the belt, the base is subject to length
contraction, which ought to loosen the belt around the flywheels. Resolve this “paradox” with by a
qualitative argument. Hint: consider the lower portion of the belt as seen in the reference frame of the upper
portion.

v

Figure 1: Question 1

Viewed from the laboratory frame, both the upper and lower belt should contract, as they are in motion
relative to the observer. The fact that the top and bottom move in opposite directions does not matter in
this case - both are contracted by the same amount, since length contraction depends on the square of the
relative velocity. Thus, the belt appears to tighten.

Viewed from a frame traveling with the upper belt, the base appears to contract, since relative to the top
portion of the belt, the pulleys on either side are moving away at velocity |v|. Why does the belt not
loosen? This is because relative to the top of the belt, the bottom of the belt is moving at velocity |2v| (ig-
noring the proper relativistic addition of velocities for the moment), and is thus length contracted twice
as much as the the distance between the pulleys. Thus, the pulleys get closer together, but the bottom of
the belt shortens even more, and overall the belt should appear to tighten.

Viewed from the bottom belt, the situation is reversed - both pulleys are moving at velocity v and the
base contracts, but the top belt is moving at |2v| and contracts twice as much. Still, the net effect is that
the belt appears to tighten, a fact which all three reference frames agree on.

2. Show that the velocity of a relativistic particle can be expressed as follows:



~v =
c ~p√

m2c2 + p2

The easiest way is to start with the right-hand side and show that it reduces to v. Since there is only
one vector on either side, and the rest are only constants, we know that ~v and ~p must be in the same
direction. Thus, it is sufficient to show that the magnitude of each side is the same, and we can drop the
vector notation.
Start by substituting the relativistic expression for γ, and then multiply both numerator and denominator
by c. After that, just start grouping terms ...
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3. Serway example 39.8 A car speeds past an observer on the ground at 0.9c. A passenger in the car throws
a ball out the car window at 0.7c relative to the car. What is the velocity of the ball with respect to the
observer on the ground?

First, label what we know. Let the observer on the ground be in the unprimed frame, and the passenger
in the car the primed frame:

vb = velocity of the ball relative to the ground = ?

vc = velocity of the car relative to the ground = 0.9c

v′
b = velocity of the ball relative to the car = 0.7c

Again, ask yourself how you would figure this out without relativity first, and that will help you pick the
proper relativistic formula. Without relativity, you would just add the velocity of the car relative to the
ground and the velocity of the ball relative to the car. Thus, all we need to do use our correct relativistic
velocity addition formula:



vb =
vc + v′

b

1 +
vcv′

b
c2

=
1.6c

1 + (0.9) (0.7)
≈ 0.98c

4. Leighton, “Principles of Modern Physics,” 1.9 A cosmic-ray muon (µ) is moving vertically through the
atmosphere with a speed v = 0.99c. Its mean life expectancy against radioactive decay into an electron
and two neutrinos is 2.22µs, as measured in its own “rest” system. What will be its mean life expectancy
as viewed by an observer on earth?

The muon’s lifetime is always the same in its own reference frame, a constant 2.22µs which we will call
the ‘proper’ time interval ∆tp. In the laboratory, we are in motion relative to the muon, and hence we
measure a dilated (longer) time interval ∆t′. For the given relative speed, then, we just need to calculate
the dilated time interval, and that is the observed lifetime in the laboratory frame. The dilated interval is:

∆t′ = γ∆tp = γ (2.22µs)

Thus, we just need to calculate γ for the given speed v.

∆t′
a = γ (2.22µs) =

1√
1 − (0.99c)2 /c2

(2.22 µs) = 15.7µs

5. Leighton, 1.10 A stick of length L is at rest on one system and is oriented at an angle θ with respect
to the x axis. What are the apparent length and orientation angle of this stick as viewed by an observer
moving at a speed v with respect to the first system?

Let the reference frame at rest with respect to the stick be the ‘unprimed’ frame, with the primed frame
corresponding to the observer moving at speed v relative to the stick. Since the relative motion is along
the (presumed collinear) x and x′ axes, the primed observer sees distances along the x′ axis as contracted
relative to the reference frame of the stick.

In the stick’s (unprimed) frame, the horizontal extent of the stick along the x axis is Lx =L cos θ, while
the extent along the y axis is Ly =L sin θ. For the moving observer, the x dimensions are contracted, but
not the y, and thus
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√
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6. Leighton, 1.15 A particle appears to move with speed u at an angle θ with respect to the x axis in a
certain system. At what speed and angle will this particle appear to move in a second system moving
with speed v with respect to the first? Why does the answer differ from that of the previous problem?

It is most straightforward to assume that the two systems have their horizontal x axes aligned. This is
still quite general, since we are still letting the particle move at an arbitrary angle θ, we may consider it
to be a choice of axes and nothing more. Let the first frame, in which the particle moves with speed u at
an angle θ be the ‘unprimed’ frame (x,y), and the second the ‘primed’ frame (x′,y′).

Along the x′ direction in the primed frame, both perceived time and distance will be altered. Taking only
the x′ component of the velocity, we consider the particle’s motion purely along the direction of relative
motion of the two frames, and we may simply use our velocity addition formula. The x component of
the particle’s velocity will in the primed frame become

u′
x =

ux − v

1 − uxv/c2
(3)

Along the y′ direction in the primed frame, since we consider motion of the particle orthogonal to the
direction of relative motion of the frames, there is no length contraction. We need only consider time
dilation. We derived this case in class, and the proper velocity addition for directions orthogonal to the
relative motion leads to

u′
y =

uy

γ (1 − uxv/c2)
where γ =

1√
1 − v2/c2

(4)

The particle’s speed in the primed frame is then easily calculated:
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√
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(5)

=

√
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y/γ2
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=

√
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(6)

As a double-check, we can set θ = 0, such that uy = 0, which corresponds to the particle moving along
the x axis. Our expression then reduces to the usual one-dimensional velocity addition formula.

The direction of motion in the primed frame is also found readily:

tanθ′ =
u′

y

u′
x

=
uy

γ (1 − uxv/c2)

1 − uxv/c2

ux − v
=

(
uy

ux − v

) √
1 − v2/c2 (7)

7. The nonrelativistic expression for the momentum of a particle p=mv agrees with experiments when
v�c. For what speed does the nonrelativistic equation give an error of (a) 1.0%? (b) 5.0%?

First of all, what do we mean by error? You want to find percent error between momentum calculated
with the relativistic formula (viz., |~p rel|=γm|~v |) and the classical formula (viz., |~p calss =m|~v |). First, we
will drop the vector notation now, since error in momentum will only be in magnitude, not direction.
Let - prel≡ |~p rel| and pclass≡ |~p class|. The definition of error you want is the difference between the two,
divided by the correct one - the relativistic formula.

100% ·
∣∣∣∣prel − pclass

prel

∣∣∣∣6 error desired

For the last line, we drop the percent Now we can just plug in what we know:∣∣∣∣prel − pclass
prel

∣∣∣∣= ∣∣∣∣γmv − mv

γmv

∣∣∣∣= ∣∣∣∣γ��mv −��mv

γ��mv

∣∣∣∣= ∣∣∣∣γ − 1
γ

∣∣∣∣6 error

We can further simplify this:∣∣∣∣γ − 1
γ

∣∣∣∣ =

∣∣∣∣1 −
1
γ

∣∣∣∣6 error∣∣∣∣1 − error
∣∣∣∣ 6

∣∣∣∣ 1γ
∣∣∣∣

What we really want is v. Remember the equation for v in terms of γ from problem 2? Take that, and
plug in the expression above:



v = c

√
1 −

1
γ2

6 c

√
1 −

∣∣∣∣(1 − error)
∣∣∣∣2

Now all we need to do is plug in the desired minimum errors - 1% or 0.01 for (a), and 5% or 0.05 for (b):

(a) v 6 c

√
1 −

∣∣∣∣(1 − error)
∣∣∣∣2 = c

√
1 −

∣∣∣∣(1 − 0.01)

∣∣∣∣2 ≈ c
√

0.02 ≈ 0.14c

(b) v 6 c

√
1 −

∣∣∣∣(1 − error)
∣∣∣∣2 = c

√
1 −

∣∣∣∣(1 − 0.05)

∣∣∣∣2 ≈ c
√

0.098 ≈ 0.31c

8. An interstellar space probe is moving at a constant speed relative to earth of 0.76c toward a distant
planet. Its radioisotope generators have enough energy to keep its data transmitter active continuously
for 15 years, as measured in their own reference frame. (a) How long do the generators last as measured
from earth? (b) How far is the probe from earth when the generators fail, as measured from earth? (c)
How far is the probe from earth when the generators fail, as measured by its built-in trip odometer?

Just to be clear, we will label quantities measured in the earth’s reference frame with primes (′), and
quantities without primes are with respect to the probe’s reference frame. The relative velocity between
the earth and the probe is the same from both reference frames, v = v′. From the probe’s (and its
generators’) reference frame, it is the observers on earth that are moving. The observers on earth should
then see a longer time interval compared to the proper time measured on the probe:

∆t′ = γ∆p =
15 yrs√

1 −
(0.76c)2

c2

≈ 23 yrs

According to observers on earth, the generators should fail after a period of ∆t′. Also according to them,
the probe should have traveled a distance d′ =v′∆t′ - the earth-bound observers watched the probe travel
for an interval ∆t′ at a constant velocity of v′ in their reference frame:

d′ = v′
∆t′ = (23 yrs)

(
3× 108 m/s

)
≈ 2.2× 1017 m

Alternatively, we could express the distance in light years - the distance light travels in one year. To do
that, we just have to realize that 0.76c means the probe travels at 76% of the speed of light:

d′ = (0.76 light speed) (23 yrs) ≈ 18 light-years



Finally, how about the distance traveled according to the probe? That is just the relative velocity multi-
plied by the elapsed time from the probe’s reference frame, i.e., the proper time:

d = v∆t = (15 yrs)
(
3× 108 m/s

)
(0.76) = 1.1× 1017 m = 11 light-years

9. Ohanian 36.44 The acceleration of a particle in one reference frame is ax =dvx/dt, where the particle
has an instantaneous velocity vx in that frame. Consider a reference frame moving with speed V parallel
to the positive x axis of the first frame. Show that the acceleration in the second frame is given by

a′
x =

dv′
x

dt′ = ax

(
1 − V2/c2

)3/2

(1 − vxV/c2)3

First thing: apply some calculus.

a′
x =

dv′
x

dt′ =
dv′

x/dt

dt′/dt
(8)

What good is this? We know v′
x in terms of vx and v, and we know t′ in terms of t, so the two derivatives

we need are trivial. Recall the velocity addition formula, applied to the current problem:

v′
x =

vx − v

1 − vxv/c2
(9)

We’ll also need the Lorentz transformation for the time coordinates:

t′ = γ
(
t −

vx

c2

)
(10)

Here note that γ involves the relative velocity between the two reference frames, v, not the particle’s
velocity vx. Thus, γ does not depend on t since v does not. Here x is just the current position of the
particle in the unprimed frame; we won’t need it since we’re differentiating presently. Given these two
transformations,

dt′

dt
= γ

(
1 −

vvx

c2

)
(11)

dv′
x

dt
=

ax − 0
1 − vvx/c2

+
− (vx − v)

(
−axv/c2

)
(1 − vvx/c2)2

= ax

[
1 − vvx/c2 + (vx − v)

(
v/c2

)
(1 − vvx/c2)2

]
(12)



Thus,

a′
x =

dv′
x

dt′ =
dv′

x/dt

dt′/dt
= ax

[
1 − vvx/c2 + (vx − v)

(
v/c2

)
γ (1 − vvx/c2)3

]

= ax

[
1 − v2/c2

γ (1 − vvx/c2)3

]
= ax

[(
1 − v2/c2

)3/2

(1 − vvx/c2)3

]
(13)

10. Ohanian A pion at rest (mπ = 273 me− ) decays to a muon (mµ = 207 me− ) and an antineutrino
(mν≈0). This reaction is written as π− → µ− + ν. Find the kinetic energy of the muon and the energy
of the antineutrino in electron volts. Hint: relativistic momentum is conserved.

Before the collision, we have only the pion, and since it is at rest, it has zero momentum and zero kinetic
energy. After it decays, we have a muon and an antineutrino created and speed off in opposite directions
(to conserve momentum). Both total energy - including rest energy - and momentum must be conserved
before and after the collision.

First, conservation of momentum. Before the decay, since the pion is at rest, we have zero momentum.
Therefore, afterward, the muon and antineutrino must have equal and opposite momenta. This means
we can essentially treat this as a one-dimensional problem, and not bother with vectors. A consolation
prize of sorts.

initial momentum = final momentum (14)

pπ = pµ + pν (15)

0 = pµ + pν (16)

=⇒ pν = −pµ = −γµmµvµ (17)

For the last step, we made use of the fact that relativistic momentum is p=γmv. Now we can also write
down conservation of energy. Before the decay, we have only the rest energy of the pion. Afterward, we
have the energy of both the muon and antineutrino. The muon has both kinetic energy and rest energy,
and we can write its total kinetic energy in terms of γ and its rest mass, E = γmc2. The antineutrino
has negligible mass, and therefore no kinetic energy, but we can still assign it a total energy based on its
momentum, E=pc.

initial energy = final energy (18)

Eπ = Eµ + Eν (19)

mπc2 = γµmµc2 + pνc (20)

mπ = γµmµ +
pν

c
(21)



Now we can combine these two conservation results and try to solve for the velocity of the muon:

mπ = γµmµ +
pν

c
= γµmµ − γµmµ

vµ

c
(22)

mπ

mµ
= γµ − γµ

vµ

c
= γ

[
1 −

vµ

c

]
(23)

We will need to massage this quite a bit more to solve for vµ ...

mπ

mµ
= γ

[
1 −

vµ

c

]
=

1 −
vµ

c√
1 −

v2
µ

c2

(24)

(
mπ

mµ

)2

=

(
1 −

vµ

c

)2

1 −
v2

µ

c2

=

(
1 −

vµ

c

)2(
1 −

vµ

c

) (
1 +

vµ

c

) =
1 −

vµ

c

1 +
vµ

c

(25)

Now we’re getting somewhere. Take what we have left, and solve it for vµ . . . we will leave that as an
exercise to the reader, and quote only the result, using the given masses of the pion and muon:

vµ

c
=

1 −
(

mπ
mµ

)2

1 +
(

mπ
mµ

)2 ≈ −0.270 (26)

From here, we are home free. We can calculate γµ and the muon’s kinetic energy first. It is convenient
to remember that the electron mass is 511 keV/c2.

γµ =
1√

1 − v2

c2

=
1√

1 −
(0.27c)2

c2

=
1√

1 − 0.272
≈ 1.0386 (27)

KEµ = (γµ − 1) mµc2 = (1.0386 − 1) (207me−) c2 (28)

= 0.0386
(
207 · 511 keV/c2

)
c2 ≈ 4.08× 106 eV = 4.08 MeV (29)

Finally, we can calculate the energy of the antineutrino as well:

Eν = pνc = −pµc = −γµmµvµ = −1.0386 ·
(
207 · 5.11 keV/c2

)
· (−0.270c) (30)

≈ 2.96× 107 eV = 29.6 MeV (31)


