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1. Serway 35.35 The index of refraction for violet light in silica flint glass is nviolet = 1.66, and for red
light it is nred =1.62. In air, n=1 for both colors of light.

What is the angular dispersion of visible light (the angle between red and violet) passing through an
equilateral triangle prism of silica flint glass, if the angle of incidence is 50◦? The angle of incidence is
that between the ray and a line perpendicular to the surface of the prism. Recall that all angles in an
equilateral triangle are 60◦.

What we need to do is find the deviation angle for both red and violet light in terms of the incident angle
and refractive index of the prism. The angular dispersion is just the difference between the deviation
angles for the two colors. First, let us define some of the geometry a bit better, referring to the figure
below.
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Let the angle of incidence be θ1, and the refracted angle θ2 at point A. The incident and refracted angles
are defined with respect to a line perpendicular to the prism’s surface. Similarly, when the light rays exit



the prism, we will call the incident angle within the prism θ3, and the refracted angle exiting the prism
θ4 at point C. If we call index of refraction of the prism n, and presume the surrounding material is just
air with index of refraction 1.00, we can apply Snell’s law at both interfaces:

n sin θ2 = sin θ1

n sin θ3 = sin θ4

Fair enough, but now we need to use some geometry to relate these four angles to each other, the deviation
angle δ, and the prism’s apex angle ϕ. Have a look at the triangle formed by points A, B, and C. All
three angles in this triangle must add up to 180◦. At point A, the angle between the prism face and the
line AC is ∠BAC = 90−θ2 - the line we drew to define θ1 and θ2 is by construction perpendicular to
the prism’s face, and thus makes a 90◦ angle with respect to the face. The angle ∠BAC is all of that 90◦

angle, minus the refracted angle θ2. Similarly, we can find ∠BCA at point C. We know the apex angle of
the prism is ϕ, and for an equilateral triangle, we must have ϕ=60◦

(90◦ − θ2) + (90◦ − θ3) + ϕ = 180◦

=⇒ ϕ = θ2 + θ3 = 60◦

How do we find the deviation angle? Physically, the deviation angle is just how much in total the exit
ray is “bent" relative to the incident ray. At the first interface, point A, the incident ray and reflected ray
differ by an angle θ1−θ2. At the second interface, point C, the ray inside the prism and the exit ray differ
by an angle θ4−θ3. These two differences together make up the total deviation - the deviation is nothing
more than adding together the differences in angles at each interface due to refraction. Thus:

δ = (θ1 − θ2) + (θ4 − θ3) = θ1 + θ4 − (θ2 + θ3)

Of course, one can prove this rigorously with quite a bit more geometry, but there is no need: we know
physically what the deviation angle is, and can translate that to a nice mathematical formula. Now we
can use the expression for ϕ in our last equation:

δ = θ1 + θ4 − ϕ

We were given θ1 =50◦, so now we really just need to find θ4 and we are done. From Snell’s law above,
we can relate θ4 to θ3 easily. We can also relate θ3 to θ2 and the apex angle of the prism, ϕ. Finally, we
can relate θ2 back to θ1 with Snell’s law. First, let us write down all the separate relations:



sin θ4 = n sin θ3

θ3 = ϕ − θ2

n sin θ2 = sin θ1

or θ2 = sin−1

(
sin θ1

n

)

If we put all these together (in the right order) we have θ4 in terms of known quantities:

sin θ4 = n sin θ3

= n sin (ϕ − θ2)

= n sin
[
ϕ − sin−1

(
sin θ1

n

)]

With that, we can write the full expression for the deviation angle:

δ = θ1 + θ4 − ϕ = θ1 + n sin
[
ϕ − sin−1

(
sin θ1

n

)]
− ϕ

Now we just need to calculate the deviation separately for red and violet light, using their different indices
of refraction. You should find:

δred = 48.56◦

δblue = 53.17◦

The angular dispersion is just the difference between these two:

angular dispersion = δblue − δred = 4.62◦

2. Serway 35.62 As light from the Sun enters the atmosphere, it refracts due to the small difference be-
tween the speeds of light in air and in vacuum. The optical length of the day is defined as the time interval
between the instant when the top of the Sun is just visibly observed above the horizon, to the instant at
which the top of the Sun just disappears below the horizon. The geometric length of the day is defined
as the time interval between the instant when a geometric straight line drawn from the observer to the
top of the Sun just clears the horizon, to the instant at which this line just dips below the horizon. The
day’s optical length is slightly larger than its geometric length.



By how much does the duration of an optical day exceed that of a geometric day? Model the Earth’s
atmosphere as uniform, with index of refraction n = 1.000293, a sharply defined upper surface, and
depth 8767 m. Assume that the observer is at the Earth’s equator so that the apparent path of the rising
and setting Sun is perpendicular to the horizon. You may take the radius of the earth to be 6.378×106 m.
Express your answer to the nearest hundredth of a second.

First, we need to draw a little picture. This is the situation we have been given:
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We presume that some human is standing at point A on the earth’s surface, looking straight out toward
the horizon. This line of sight intersects the boundary between the atmosphere and space (which we are
told to assume is a sharp one) at point B. Light rays from the sun, which is slightly below the horizon,
are refracted toward the earth’s surface at point B, and continue on along the line of sight from B to A.
We know the index of refraction of vacuum is just unity (nvacuum = 1), while that of the atmosphere is
n=1.000293. The day appears to be slightly longer because we see the sun even after it has gone through
an extra angle of rotation δθ due to atmospheric refraction.

To set up the geometry, we first draw a radial line from point B to the center of the earth. This line,
BC, will intersect the boundary of the atmosphere at point B, and will be normal to the atmospheric
boundary. This defines the angle of incidence θ2 and the angle of refraction θ1 for light coming from the
sun. The difference between these two angles, δθ, is how much the light is bent downward upon being
refracted from the atmosphere. How do we relate this to the extra length of the day one would observe?
We know that the earth revolves on its axis at a constant angular speed - one revolution in 24 hours.
Thus, we can easily find the angular speed of the earth:

earth’s angular speed = ω =
one revolution

1day
=

360◦

86400 s

Here we used the fact that there are 24 · 60 · 60=86400 seconds in one day. Given the angular velocity of
the earth, we know exactly how long it will take for the earth to rotate through the “extra" angle δθ due
to refraction:

δθ = ωδt



We only need one last bit: the atmospheric refraction occurs twice per day – once at sun-up and once at
sun-down. The total “extra" length of the day is then 2δt. Thus, if we can find δθ, we can figure out how
much longer the day seems to be due to atmospheric refraction. In order to find it, we need to use the
law of refraction and a bit of geometry. First, from the law of refraction and the fact that δθ=θ2 − θ1,
we can state the following:

θ2 − θ1 = δθ

n sin θ1 = sin θ2 = sin (θ1 + δθ)

In order to proceed further, we draw a line from point A to the center of the earth, point D. This forms
a triangle, 4ABD. Because line AD is a radius of the earth, by construction, it must intersect line AB at
a right angle, since the latter is by construction a tangent to the earth’s surface. Thus, 4ABD is a right
triangle, and

sin θ1 =
AD

BD
=

Re

Re + d

Plugging this into the previous equation,

n sin θ1 = sin θ2 = sin (θ1 + δθ) = n
Re

Re + d

In principle, we are done at this point. The previous expression allows one to calculate θ1, while the
present one allows one to find δθ if θ1 is known. From that, one only needs the angular speed of the
earth.

θ2 = θ1 + δθ = sin−1

[
nRe

Re + d

]
δθ = sin−1

[
nRe

Re + d

]
− θ1 = sin−1

[
nRe

Re + d

]
− sin−1

[
Re

Re + d

]
= ωδt

2δt =
2δθ

ω
≈ 163.82 s

Of course, it is more satisfying to have an analytic approximation. We will leave that as an exercise to the
reader for now.

3. Frank 16.1 What is the apparent depth of a swimming pool in which there is water of depth 3 m, (a)
When viewed from normal incidence? (b) When viewed at an angle of 60◦ with respect to the surface?
The refractive index of water is 1.33.

As always, we first need to draw a little picture of the situation at hand.
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It is slightly more convenient to redefine the angle of incidence θi to be with respect to the normal of
the water’s surface itself, rather than with respect to the surface, since that is our usual convention. That
means we are interested in incident angles for the observer of 90◦ and 30◦. The depth of the pool will be
dreal =3 m. If an observer views the bottom of the pool with an angle θi with respect to the surface nor-
mal, refracted rays from the bottom of the pool will be bent away from the surface normal on the way to
their eyes. That is, rays emanating from the bottom of the pool will make an angle θr <θi with respect to
the surface normal, and rays exiting the pool will make an angle θi with the surface normal. This is owing
to the fact that the light will be bent toward the normal in the faster medium, the air, on exiting the water.

What depth does the observer actually see? They see what light would do in the absence of refraction,
the path that light rays would appear to take if the rays were not “bent” by the water. In this case, that
means that the observer standing next to the pool would think they saw the light rays coming from an
angle θi with respect to the surface normal (dotted line in the pool). The lateral position of the bottom
of the pool would remain unchanged. If the real light rays intersect the bottom of the pool a distance h

from the edge, then the apparent bottom of the pool is also a distance h from the edge of the pool. Try
demonstrating this with a drinking straw in a glass of water!

So what to do? First off, we can apply Snell’s law. If the index of refraction of air is 1, and the water has
an index of refraction n, then

n sin θr = sin θi

We can also use the triangle defined by dreal and h:

tanθr =
h

dreal



as well as the triangle defined by dreal and hi:

tan (90 − θi) =
dapp

h
=

1
tanθi

Solving the last two equations for h,

h = dreal tanθr = dapp tanθi

=⇒ dapp = dreal

[
tanθr

tanθi

]

From Snell’s law, we have a relationship between θr and θi already:

θr = sin−1

[
sin θi

n

]

Putting everything together,

dapp =
dreal

tanθi
tanθr =

dreal
tanθi

[
tan

(
sin−1

[
sin θi

n

])]

If you just plug in the numbers at this point, you have a problem. One of the angles is θi = 0, normal
incidence, which means we have to divide by zero in the expression above. Dividing by zero is worse
than drowning kittens, far worse. Thankfully, we know enough trigonometry to save the poor kittens.

We can save the kittens by remembering an identity for tan
[
sin−1 x

]
. If we have an equation like

y = sin−1 x, it implies siny = x. This means y is an angle whose sine is x. If y is an angle in a right
triangle, then it has an opposite side x and a hypotenuse 1, making the adjacent side

√
1 − x2. The

tangent of angle y must then be x/
√

1 − x2. Thus,

tan
[
sin−1 x

]
=

x√
1 − x2

Using this identity in our equation for dapp,

dapp =
dreal

tanθi

 sin θi

n

√
1 −

[
sinθi

n

]2

 =
dreal

tanθi

[
sin θi√

n2 − sin2 θi

]
=

dreal cos θi√
n2 − sin2 θi

iAlong with an identify for tan θ, viz., tan (90−θ) = 1/ tan θ



Viewed from normal incidence with respect to the surface means θi = 0 – looking straight down at the
surface of the water. In this case, sin θi =0, and the result is simple:

dapp =
dreal
n

≈ 2.6 m

Viewed from 60◦ with respect to the surface means 30◦ with respect to the normal, and thus

dapp = dreal cos 30

[
1√

1.332 − sin2 30

]
≈ 2.1 m

There are easier ways to solve the normal incidence problem, without endangering any kittens whatso-
ever. Solving that problem, however, is a special case, and of limited utility. You would still have to solve
the case of 60◦ incidence separately. I wanted to show you here that solving the general problem just once
is all you need to do, so long as you are careful enough.

4. A conducting rectangular loop of mass M, resistance R, and dimensions w by l falls from rest into a
magnetic field ~B , as shown at right. At some point before the top edge of the loop reaches the magnetic
field, the loop attains a constant terminal velocity vT . Show that the terminal velocity is:

vT =
MgR

B2w2

NB – terminal velocity is reached when the net acceleration is zero. See the schematic figure on the next page.
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First, let us analyze the situation qualitatively. As the loop falls into the region of magnetic field, more of
its area is exposed to the field, which increases the total flux through the loop. This increase in magnetic
flux will cause an induced potential difference around the loop, via Faraday’s law, which will create a
current that tries to counteract this change in magnetic flux. Since the flux is increasing, the induced
current in the loop will try to act against the existing field to reduce the change in flux, which means the



current will circulate counterclockwise to create a field out of the page.

Once there is a current flowing in the loop, each current-carrying segment will feel a magnetic force. The
left and right segments of the loop will have equal and opposite forces, leading to no net effect, but the
current flowing (to the right) in the bottom segment will lead to a force FB = BIw upward. Again, this
is consistent with Faraday’s (and Lenz’s) law - any magnetic force on the loop must act in such a way to
reduce the rate at which the flux changes, which in this case clearly means slowing down the loop. The
upward force on the loop will serve to counteract the gravitational force, which is ultimately responsible
for the flux change in this case anyway. The faster the loop falls, the larger the upward force it experi-
ences, and at some point the magnetic force will balance the gravitational force perfectly, leading to no
net acceleration, and hence constant velocity. This is the “terminal velocity.” Of course, once the whole
loop is inside the magnetic field, the flux is again constant, and the loop just starts to fall normally again.ii

Quantitatively, we must first find the induced voltage around the loop, which will give us the current.
The current will give us the force, which will finally give us the acceleration. As the loop falls into the
magnetic field, at some instant t we will say that a length x of the loop has moved into the field, out of
the total length l. At this time, the total flux through the loop is then:

ΦB = ~B · ~A = BA = Bwx

From the flux, we can easily find the induced voltage from Faraday’s law.

∆V = −
∆ΦB

∆t
= −Bw

∆x

∆t
= −Bwv

Here we made use of the fact that the rate at which the length of the loop exposed to the magnetic field
changes is simply the instantaneous velocity, ∆x/∆t = v. Once we have the induced voltage, given the
resistance of the loop R, we know the current via Ohm’s law:

I =
∆V

R
= −

Bwv

R

From Lenz’s law we know the current circulates counterclockwise. In the right-most segment of the
loop, the current is flowing up, and the magnetic field into the page. The right-hand rule then dictates
that the force on this current-carrying segment must be to the left. The left-most segment of the loop has
a force equal in magnitude, since the current I, the length of wire, and the magnetic field are the same,
but the force is in the opposite direction. Thus, taken together, the left and right segments of the loop

iiWe would still have eddy currents, which would provide some retarding force, but for thin wires eddy current forces are
probably going to be negligible. This is basically what we demonstrated with our conducting pendulums swinging through a
magnetic field. The pendulums that had only thin segments of conductor (it looked like a fork) experienced very little damping
compared to a plain flat plate.



contribute no net force. The bottom segment, however, experiences an upward force, since the current is
to the right. For a constant magnetic field and constant current (true at least instantaneously), the force
is easily found:

FB = BIw

We can substitute our expression for I above:

FB = BIw = −
B2w2v

R

At the terminal velocity vT , this upward force will exactly balance the downward gravitational force:

∑
F = mg −

B2w2vT

R
= 0

=⇒ vT =
mgR

B2w2

5. A point source of light is placed at a fixed distance l from a screen. A thin convex lens of focal length f

is placed somewhere between the source and screen, a distance q from the screen and p from the source.
The lens is moved back and forth between the source and screen, but both screen and source remain fixed,
thus p + q= l at all times.

What is the minimum value of l such that a focused image will be formed at two different positions of
the lens? Recall our recent laboratory experiment.

What we are basically told is that p + q= l at all times. We can use this along with the lens equation to
come up with a set of solutions for q in terms of l and f - we will get a quadratic, and we will be able to
readily see what conditions give two, one, or no real solutions.



l = p + q

1
f

=
1
p

+
1
q

=⇒ 1
q

=
1
f

−
1
p

1
q

=
1
f

−
1

l − q

1
q

=
l − q

f (l − q)
−

f

f (l − q)

1
q

=
l − q − f

f (l − q)

Now we have an equation purely in terms of l, q, and f, which we can readily solve for q. Start by
cross-mulitplying.

f (l − q) = q (l − q − f)

fl − fq = ql − q2 − qf

q2 − lq + fl = 0

=⇒ q =
l±

√
l2 − 4fl

2

From the solution to the quadratic above, we can see that there are two real image positions when the
factor under the square root is positive, when l2 >4fl or l>4f. When the length l is exactly four times
the focal length, l = 4f, there is only one solution to the quadratic. Thus, the critical position is when
l=4f, which results in q= l

2 =p.

6. Consider two solenoids, one of which is a tenth-scale model of the other. The larger solenoid is 2 m
long, and 1 m in diameter, and is wound with 1 cm-diameter copper wire. When the coil is connected to
a 120 V dc generator, the magnetic field at the center is exactly 0.1 T. The scaled-down version is exactly
one-tenth the size in every linear dimension, including the diameter of the wire. The number of turns is
the same in both coils, and both are designed to provide the same central field.

(a) Show that the voltage required is the same, namely, 120 V
(b) Compare the coils with respect to the power dissipated, and the difficulty of removing this heat by
some cooling means.

This is basically a scaling problem: when everything is shrunk by 10 times, what happens to the required
voltage for a given field? First, let’s consider the large solenoid. Let’s say it has length L = 2 m, radius
r= 0.5 m, contains N turns of wire, and it provides a field B= 0.1 T with a current I. We know we can
relate the field and the current:



B = µ0
N

L
I

The solenoid is just a long single strand of wire wrapped around a cylinder. If we say that the total length
of wire used to wrap the solenoid is l, and the wire’s diameter is d, then we can calculate the resistance
of the solenoid:

R =
ρl

A
=

ρl

πd2/4

Here we have used the wire’s resistivity ρ, and its cross-sectional area A = πr2 = πd2/4. Given the
resistance and voltage of ∆V =120 V, we can calculate the current:

I =
∆V

R
=

∆Vπd2/4
ρl

Now if we plug that into our first solenoid equation above, we can relate voltage and magnetic field:

B = µ0
N

L
I = µ0

N

L

∆Vπd2/4
ρl

=
µ0π

4ρ

N∆Vd2

Ll

Now, what about the small solenoid? Every dimension is a factor of 10 smaller. If all the dimensions are
10 times smaller, the number of turns that fit within 1/10 the length is the same as the big solenoid if the
wire diameter is also 1/10 as large! In other words, both coils will have the same number of turns - the
space for the wire is 10 times smaller, but so is the wire.

In order to find the relationship for the small solenoid, we will use the same symbols, but everything for
the small solenoid will have a prime ′. The number of turns in the small solenoid is N′, and in for the
large solenoid it is just N. The voltage on the little solenoid is ∆V ′, and on the large one we have just ∆V .
Using the results from above, magnetic field for the small solenoid is then easily found by substitution:

B′ =
µ0π

4ρ

N′∆V(d′)2

L′l′
= B

We don’t have to bother with a prime on the resistivity, both coils have the same sort of wire. Remember,
our desired condition is that B′ =B. We know that N′ =N, and all the dimensions are 10 times smaller
- the length of the solenoid, the wire diameter, and therefore also the length of wire required. We have
the same number of turns in each coil, but in the smaller coil the circumference of each turn is 10 times
smaller, which means overall, the total length of wire required l is 10 times smaller. Thus:



B′ =
µ0π

4ρ

N′∆V ′(d′)2

L′l′

=
µ0π

4ρ

N∆V ′(d′)2

L′l′
note that N′ = N

=
µ0π

4ρ

N∆V ′( d
10)2

L
10

l
10

scale all dimensions by
1
10

=
µ0π

4ρ

N∆V ′d2

Ll

Now, we want to enforce the condition that the field is the same in both solenoids:

B′ = B

=⇒ µ0π

4ρ

N∆V ′d2

Ll
=

µ0π

4ρ

N∆Vd2

Ll

=⇒ ∆V ′ = ∆V

Thus, a solenoid shrunk by 10 times in every dimension will require the same applied voltage for the
same magnetic field. What about the power consumption? The current in the large solenoid was

I =
∆V

R
=

∆Vπd2/4
ρl

In the small solenoid, we now know that the voltage is the same, but the resistance is not, so we should
have:

I′ =
∆V

R′ =
∆Vπ(d′)2/4

ρl′
=

∆Vπ( d
10)2/4

ρ l
10

=
1
10

∆Vπd2/4
ρl

=
1
10

I

The current in the little solenoid is 10 times less - sensible, since the total length of wire is 10 times
smaller, but the area of the wire is 100 times smaller. The power required for each is the product of
current and voltage:

Pbig = I∆V

Psmall = I′∆V =
1
10

I∆V =
1
10

Pbig

Not only is the larger solenoid ten times larger, it requires ten times more power, and therefore dissipates
ten times more heat. The cooling requirements will be far more formidable for the larger solenoid. For
instance, if we decide to use water cooling, the flow rate will need to be at least 10 times larger for the



large solenoid to extract a heat load ten times larger. Not to mention the fact that we have to acquire a
much larger power supply in the first place - practically speaking, the difference between a 5 A current
source and a 50 A current source is significant. Keep in mind that your normal household outlets deliver
120 V at a maximum of ∼15 A.

7. The walls of a prison cell are perpendicular to the four cardinal compass directions. On the first day
of spring, light from the rising Sun enters a rectangular window in the eastern wall. The light traverses
2.57 m horizontally to shine perpendicularly on the wall opposite the window. A prisoner observes the
patch of light moving across this western wall and for the first time forms his own understanding of the
rotation of the Earth. (a) With what speed does the illuminated rectangle move? (b) The prisoner holds
a small square mirror flat against the wall at one corner of the rectangle of light. The mirror reflects light
back to a spot on the eastern wall close beside the window. How fast does the smaller square of light
move across that wall?

The sun appears to move at an angular velocity ω, which means that it moves through an angular dis-
placement ∆θ in a time ∆t: ω=∆θ/∆t. We know the rotation rate of the sun: it goes through a full circle
of 2π radians in 24 hours:

ω =
∆θ

∆t
=

2π rad
86400 s

≈ 7.27× 10−5 rad/s

The light streaming through the prison window will move through an angle ∆θ as shown below as the
sun moves through the sky:

r

Δθ

If the distance the light covers along the wall is s, then it is clear that s=∆θr. The rate at which the spot
moves is ds/dt. Since r=2.37 m is constant,

ds

dt
=

d

dt
(∆θr) = r

d∆θ

dt
= rω = (2.37 m)

(
7.27× 10−5 rad/s

)
≈ 0.172 mm/s

If the prisoner uses a mirror, the path length of the light is simply doubled, as if the room were twice as
wide, so a given angular displacement ∆θ results in twice as large a lateral displacement s, and twice the



apparent speed ds/dt. Thus, for the second case, we have just 0.345 mm/s.


